Pfizer Vaccine Research, 401 North Middletown Road, Pearl River, NY 10965, United States.
J Virol Methods. 2010 Mar;164(1-2):43-50. doi: 10.1016/j.jviromet.2009.11.023. Epub 2009 Nov 24.
Propagation-defective vesicular stomatitis virus (VSV) vectors that encode a truncated G protein (VSV-Gstem) or lack the G gene entirely (VSV-DeltaG) are attractive vaccine vectors because they are immunogenic, cannot replicate and spread after vaccination, and do not express many of the epitopes that elicit neutralizing anti-VSV immunity. To consider advancing non-propagating VSV vectors towards clinical assessment, scalable technology that is compliant with human vaccine manufacturing must be developed to produce clinical trial material. Accordingly, two propagation methods were developed for VSV-Gstem and VSV-DeltaG vectors encoding HIV gag that have the potential to support large-scale production. One method is based on transient expression of G protein after electroporating plasmid DNA into Vero cells and the second is based on a stable Vero cell line that contains a G gene controlled by a heat shock-inducible transcription unit. Both methods reproducibly supported production of 1 x 10(7) to 1 x 10(8) infectious units (I.U.s) of vaccine vector per milliliter. Results from these studies also showed that optimization of the G gene is necessary for abundant G protein expression from electroporated plasmid DNA or from DNA integrated in the genome of a stable cell line, and that the titers of VSV-Gstem vectors generally exceeded VSV-DeltaG.
传播缺陷型水疱性口炎病毒(VSV)载体,其编码截短的 G 蛋白(VSV-Gstem)或完全缺乏 G 基因(VSV-DeltaG),是有吸引力的疫苗载体,因为它们具有免疫原性,接种后不能复制和传播,并且不表达引起中和抗 VSV 免疫的许多表位。为了考虑将非复制性 VSV 载体推进临床评估,必须开发符合人体疫苗制造标准的可扩展技术,以生产临床试验材料。因此,为了开发编码 HIV gag 的 VSV-Gstem 和 VSV-DeltaG 载体,开发了两种具有大规模生产潜力的繁殖方法。一种方法是在将质粒 DNA 电穿孔到 Vero 细胞后瞬时表达 G 蛋白,第二种方法是基于含有由热休克诱导转录单元控制的 G 基因的稳定 Vero 细胞系。这两种方法都可重复性地支持每毫升生产 1×10(7)至 1×10(8)个感染性单位(IU)的疫苗载体。这些研究的结果还表明,优化 G 基因对于从电穿孔的质粒 DNA 或从稳定细胞系基因组中整合的 DNA 大量表达 G 蛋白是必要的,并且 VSV-Gstem 载体的滴度通常超过 VSV-DeltaG。