Profectus Biosciences, Tarrytown, New York, USA
University of Texas Medical Branch, Galveston, Texas, USA.
J Virol. 2014 Jun;88(12):6690-701. doi: 10.1128/JVI.03441-13. Epub 2014 Apr 2.
In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation.
The work described in this article demonstrates a rational approach to the attenuation of vesicular stomatitis virus neurovirulence. The major attenuation strategy described here will be most likely applicable to other members of the Rhabdoviridae and possibly other families of nonsegmented negative-strand RNA viruses. These studies have also enabled the identification of an attenuated, replication-competent rVSIV vector that has successfully undergone its first clinical evaluation in humans. Therefore, these studies represent a major milestone in the development of attenuated rVSIV, and likely other vesiculoviruses, as a new vaccine platform(s) for use in humans.
在以前的工作中,一种表达猴免疫缺陷病毒(SIV) gag 和人类免疫缺陷病毒 1(HIV-1) env 抗原的水疱性口炎病毒印第安纳血清型(rVSIV)原型重组病毒载体保护非人灵长类动物(NHP)免受 HIV-1/SIV 重组病毒(SHIV)的疾病侵害。然而,当在严格的 NHP 神经毒力(NV)模型中进行测试时,该载体对于临床评估来说不够减毒。在本文描述的工作中,通过将特定 G 蛋白截短与 N 基因易位或突变(M33A 和 M51A)结合,该原型 rVSIV 载体被减弱,该突变会消除亚基因 M 多肽的表达,通过在 N 和 L 基因中掺入温度敏感突变,并通过删除 VSIV G 基因来产生依赖于 G 蛋白的复制子进行体外繁殖。在一系列 NHP NV 研究中进行评估时,这些减毒 rVSIV 变体未引起临床疾病,并与野生型 VSIV 和原型 rVSIV 疫苗载体相比,神经病理学显著减少。尽管体内减毒大大增加,但一些 rVSIV 载体引起的细胞介导免疫反应的大小与更毒力的原型载体诱导的反应相似。这些数据表明了合理减弱 VSIV NV 的新方法,同时保留了载体的免疫原性,并导致了鉴定出一种 rVSIV N4CT1gag1 疫苗载体,该载体现已成功完成 I 期临床评估。
本文描述的工作展示了一种合理的减弱水疱性口炎病毒神经毒力的方法。这里描述的主要减毒策略很可能适用于 Rhabdoviridae 的其他成员,可能也适用于其他非节段负链 RNA 病毒家族。这些研究还使我们能够鉴定出一种减毒、复制有效的 rVSIV 载体,该载体已成功在人类中进行了首次临床评估。因此,这些研究代表了减弱 rVSIV 以及可能其他水疱病毒作为人类新疫苗平台的重要里程碑。