Advanced Power and Energy Program, University of California, Irvine, California 92697-3550, USA.
Environ Sci Technol. 2009 Dec 1;43(23):9022-9. doi: 10.1021/es901515y.
Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).
采用氢气基础设施和氢燃料电池汽车(HFCV)来替代汽油内燃机(ICE)车辆,被提议作为减少运输部门的污染物和温室气体(GHG)排放并实现燃料独立的策略。然而,目前尚不确定(1)污染物减少的程度将如何影响城市空气质量,以及(2)与未来年份(例如 2060 年)预计的超低排放汽油动力车辆相比,污染物排放减少和由此产生的城市空气质量影响的程度。为了解决这些问题,本研究引入了一种“空间和时间分辨的能源和环境工具”(STREET),以在高地理和时间分辨率下描述与综合氢气供应基础设施和 HFCV 相关的污染物和 GHG 排放。为了演示 STREET 的实用性,使用地理信息系统(GIS)数据在原型城市大气流域(加利福尼亚南海岸空气盆地)中评估了两种空间和时间分辨的氢气基础设施情景。使用详细的大气化学和传输模型量化了从井口到车轮(WTW)的 GHG 排放,并建立了空气质量,然后将其与由先进 ICE 车辆组成的未来汽油情景进行了比较。一个氢气情景包括更多的可再生一次能源用于氢气生产,另一个情景则包括更多的化石燃料来源。这两种情景涵盖了各种氢气生产、分配和加油策略。两种氢气情景的 GHG 排放量减少了 61%至 68%,同时城市空气质量也得到了显著改善(例如,峰值 8 小时平均臭氧减少了 10 ppb,24 小时平均颗粒物浓度减少了 6 微克/立方米,特别是在大气流域中浓度对汽油情景最高的区域)。