Suppr超能文献

耳腔加压对中耳骨导和气导反应的影响。

Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses.

机构信息

Adaptive Technologies, Inc, 2020 Kraft Dr, Suite 3040, Blacksburg, VA 24060, USA.

出版信息

Hear Res. 2010 May;263(1-2):204-15. doi: 10.1016/j.heares.2009.11.013. Epub 2009 Nov 26.

Abstract

In extremely loud noise environments, it is important to not only protect one's hearing against noise transmitted through the air-conduction (AC) pathway, but also through the bone-conduction (BC) pathways. Much of the energy transmitted through the BC pathways is concentrated in the mid-frequency range around 1.5-2 kHz, which is likely due to the structural resonance of the middle ear. One potential approach for mitigating this mid-frequency BC noise transmission is to introduce a positive or negative static pressure in the ear canal, which is known to reduce BC as well as AC hearing sensitivity. In the present study, middle-ear ossicular velocities at the umbo and stapes were measured using human cadaver temporal bones in response to both BC and AC excitations, while static air pressures of +/-400 mm H(2)O were applied in the ear canal. For the maximum negative pressure of -400 mm H(2)O, mean BC stapes-velocity reductions of about 5-8 dB were observed in the frequency range from 0.8 to 2.5 kHz, with a peak reduction of 8.6(+/-4.7)dB at 1.6 kHz. Finite-element analysis indicates that the peak BC-response reduction tends to be in the mid-frequency range because the middle-ear BC resonance, which is typically around 1.5-2 kHz, is suppressed by the pressure-induced stiffening of the middle-ear structure. The measured data also show that the BC responses are reduced more for negative static pressures than for positive static pressures. This may be attributable to a difference in the distribution of the stiffening among the middle-ear components depending on the polarity of the static pressure. The characteristics of the BC-response reductions are found to be largely consistent with the available psychoacoustic data, and are therefore indicative of the relative importance of the middle-ear mechanism in BC hearing.

摘要

在极其嘈杂的环境中,不仅要通过空气传导(AC)途径保护听力免受噪声的影响,还要通过骨传导(BC)途径保护听力。通过 BC 途径传递的大部分能量集中在 1.5-2 kHz 的中频范围内,这可能是由于中耳的结构共振所致。一种潜在的减轻这种中频 BC 噪声传递的方法是在耳道中引入正压或负压,这已知会降低 BC 和 AC 听力敏感度。在本研究中,使用人类尸体颞骨测量了鼓岬和镫骨的中耳锤骨速度,以响应 BC 和 AC 激发,同时在耳道中施加正负 400 毫米水柱的静态气压。对于最大负压 -400 毫米水柱,在 0.8 至 2.5 kHz 的频率范围内观察到 BC 镫骨速度降低约 5-8 dB,在 1.6 kHz 处的最大降低幅度为 8.6(+/-4.7)dB。有限元分析表明,峰值 BC 响应降低倾向于中频范围,因为中耳 BC 共振通常在 1.5-2 kHz 左右,被中耳结构压力诱导的变硬所抑制。测量数据还表明,负静态压力比正静态压力对 BC 响应的降低更为明显。这可能归因于取决于静态压力极性的中耳组件变硬分布的差异。BC 响应降低的特性与现有的心理声学数据基本一致,因此表明中耳机制在 BC 听力中的相对重要性。

相似文献

1
Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses.
Hear Res. 2010 May;263(1-2):204-15. doi: 10.1016/j.heares.2009.11.013. Epub 2009 Nov 26.
2
Ossicular resonance modes of the human middle ear for bone and air conduction.
J Acoust Soc Am. 2009 Feb;125(2):968-79. doi: 10.1121/1.3056564.
3
[Human ear finite element model study of the effects of ear canal and middle ear cavity on air conduction and bone conduction].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019 Mar;33(3):251-254;258. doi: 10.13201/j.issn.1001-1781.2019.03.016.
4
The outer ear pathway during hearing by bone conduction.
Hear Res. 2022 Aug;421:108388. doi: 10.1016/j.heares.2021.108388. Epub 2021 Oct 31.
5
Middle-ear and inner-ear contribution to bone conduction in chinchilla: The development of Carhart's notch.
Hear Res. 2016 Oct;340:144-152. doi: 10.1016/j.heares.2016.02.015. Epub 2016 Feb 24.
7
Numerical analysis of the effects of ossicular chain malformations on bone conduction stimulation.
Comput Methods Biomech Biomed Engin. 2021 Jun;24(8):817-830. doi: 10.1080/10255842.2020.1853107. Epub 2020 Nov 30.
8
Model predictions for bone conduction perception in the human.
Hear Res. 2016 Oct;340:135-143. doi: 10.1016/j.heares.2015.10.014. Epub 2015 Nov 30.
9
Bone conduction in Thiel-embalmed cadaver heads.
Hear Res. 2013 Dec;306:115-22. doi: 10.1016/j.heares.2013.10.002. Epub 2013 Oct 23.
10
Factors contributing to bone conduction: the outer ear.
J Acoust Soc Am. 2003 Feb;113(2):902-13. doi: 10.1121/1.1534606.

引用本文的文献

1
How the Human Cochlea Moves: Biomechanical Modeling of a Wide, Layered Osseous Spiral Lamina.
J Assoc Res Otolaryngol. 2025 Jul 9. doi: 10.1007/s10162-025-01000-4.
2
Computational model of the human cochlea with motion of the layered osseous spiral lamina.
bioRxiv. 2024 Aug 19:2024.08.16.608342. doi: 10.1101/2024.08.16.608342.
3
Sound reception and hearing capabilities in the Little Penguin (): first predicted in-air and underwater audiograms.
R Soc Open Sci. 2024 Aug 28;11(8):240593. doi: 10.1098/rsos.240593. eCollection 2024 Aug.
4
Finite-Element Modelling Based on Optical Coherence Tomography and Corresponding X-ray MicroCT Data for Three Human Middle Ears.
J Assoc Res Otolaryngol. 2023 Jun;24(3):339-363. doi: 10.1007/s10162-023-00899-x. Epub 2023 May 10.
6
Effect of closing material on hearing rehabilitation in stapedectomy and stapedotomy: A finite element analysis.
Front Neurosci. 2023 Feb 14;17:1064890. doi: 10.3389/fnins.2023.1064890. eCollection 2023.
7
Three-dimensional wideband absorbance immittance findings in young adults with large vestibular aqueduct syndrome.
Laryngoscope Investig Otolaryngol. 2022 Dec 10;8(1):236-244. doi: 10.1002/lio2.988. eCollection 2023 Feb.
8
Vibration Measurements of the Gerbil Eardrum Under Quasi-static Pressure Sweeps.
J Assoc Res Otolaryngol. 2022 Dec;23(6):739-750. doi: 10.1007/s10162-022-00867-x. Epub 2022 Sep 13.
10
[Numerical study on the effect of middle ear malformations on energy absorbance].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Feb 25;38(1):89-96. doi: 10.7507/1001-5515.202002051.

本文引用的文献

1
Ossicular resonance modes of the human middle ear for bone and air conduction.
J Acoust Soc Am. 2009 Feb;125(2):968-79. doi: 10.1121/1.3056564.
2
Soft tissue morphometry of the malleus-incus complex from micro-CT imaging.
J Assoc Res Otolaryngol. 2008 Mar;9(1):5-21. doi: 10.1007/s10162-007-0103-x. Epub 2008 Mar 3.
3
Middle-ear circuit model parameters based on a population of human ears.
J Acoust Soc Am. 2008 Jan;123(1):197-211. doi: 10.1121/1.2817358.
6
Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission.
J Acoust Soc Am. 2006 Dec;120(6):3799-810. doi: 10.1121/1.2372454.
7
A geometrically nonlinear finite-element model of the cat eardrum.
J Acoust Soc Am. 2006 May;119(5 Pt 1):2859-68. doi: 10.1121/1.2188370.
10
Hearing protection: surpassing the limits to attenuation imposed by the bone-conduction pathways.
J Acoust Soc Am. 2003 Oct;114(4 Pt 1):1955-67. doi: 10.1121/1.1605415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验