Department of Computer Science Education, Korea University, Seoul 136-701, Republic of Korea.
Artif Intell Med. 2010 Feb-Mar;48(2-3):83-9. doi: 10.1016/j.artmed.2009.07.010. Epub 2009 Nov 27.
In recent years, several machine learning approaches have been applied to modeling the specificity of the human immunodeficiency virus type 1 (HIV-1) protease cleavage domain. However, the high dimensional domain dataset contains a small number of samples, which could misguide classification modeling and its interpretation. Appropriate feature selection can alleviate the problem by eliminating irrelevant and redundant features, and thus improve prediction performance.
We introduce a new feature subset selection method, FS-MLP, that selects relevant features using multi-layered perceptron (MLP) learning. The method includes MLP learning with a training dataset and then feature subset selection using decompositional approach to analyze the trained MLP. Our method is able to select a subset of relevant features in high dimensional, multi-variate and non-linear domains.
Using five artificial datasets that represent four data types, we verified the FS-MLP performance with seven other feature selection methods. Experimental results showed that the FS-MLP is superior at high dimensional, multi-variate and non-linear domains. In experiments with HIV-1 protease cleavage dataset, the FS-MLP selected a set of 14 highly relevant features among 160 original features. On a validation set of 131 test instances, classifiers that used the 14 features showed about 95% accuracy which outperformed other seven methods in terms of accuracy and the number of features.
Our experimental results indicate that the FS-MLP is effective in analyzing multi-variate, non-linear and high dimensional datasets such as HIV-1 protease cleavage dataset. The 14 relevant features which were selected by the FS-MLP provide us with useful insights into the HIV-1 cleavage site domain as well. The FS-MLP is a useful method for computational sequence analysis in general.
近年来,已有几种机器学习方法被应用于构建人类免疫缺陷病毒 1 型(HIV-1)蛋白酶切割域的特异性模型。然而,高维数据集样本数量较少,可能会误导分类建模及其解释。适当的特征选择可以通过消除不相关和冗余的特征来缓解这个问题,从而提高预测性能。
我们引入了一种新的特征子集选择方法 FS-MLP,该方法使用多层感知器(MLP)学习选择相关特征。该方法包括使用训练数据集进行 MLP 学习,然后使用分解方法进行特征子集选择,以分析训练后的 MLP。我们的方法能够在高维、多变量和非线性域中选择相关特征的子集。
使用五个代表四种数据类型的人工数据集,我们将 FS-MLP 性能与其他七种特征选择方法进行了验证。实验结果表明,FS-MLP 在高维、多变量和非线性领域表现优异。在 HIV-1 蛋白酶切割数据集的实验中,FS-MLP 在 160 个原始特征中选择了一组 14 个高度相关的特征。在包含 131 个测试实例的验证集中,使用这 14 个特征的分类器的准确率约为 95%,在准确率和特征数量方面均优于其他七种方法。
我们的实验结果表明,FS-MLP 能够有效地分析多变量、非线性和高维数据集,如 HIV-1 蛋白酶切割数据集。FS-MLP 选择的 14 个相关特征为我们提供了有关 HIV-1 切割位点域的有用见解。FS-MLP 是一般计算序列分析的一种有用方法。