Advanced Bioprocessing Centre, Brunel Institute for Bioengineering, Brunel University, Uxbridge UB8 3PH, UK.
J Chromatogr A. 2010 Jan 1;1217(1):34-9. doi: 10.1016/j.chroma.2009.10.055. Epub 2009 Oct 30.
A new and significantly more robust design of non-synchronous coil planet centrifuge is introduced where the degree of mixing between two immiscible phases can be changed independently from the "g" field required to separate out the phases. A hypothesis that an optimum ratio between the speed of the bobbin and the speed of the rotor can be found to optimise the efficiency of the separation for a given force field is upheld for an intermediate polarity phase system. This paves the way for extensive further research to find the optimum non-synchronous conditions for a range of different phase systems that are desirable for the separation of large molecules, proteins and biologics but can tend to emulsify in the standard "J" type centrifuge systems currently available and routinely in use for aqueous organic phase systems. A step change of up to 30% in resolution and 90% in plate efficiency is demonstrated.
介绍了一种新型且更强大的非同步线圈行星离心机设计,其中两种不混溶相之间的混合程度可以与分离相所需的“g”场独立改变。对于中间极性相系统,维持了一个假设,即可以找到鲍尔速度和转子速度之间的最佳比例,以优化给定力场下的分离效率。这为进一步广泛研究寻找最佳的非同步条件铺平了道路,适用于一系列不同的相系统,这些系统对于分离大分子、蛋白质和生物制剂非常理想,但在目前可用的标准“J”型离心机系统中往往会乳化,这些系统通常用于水-有机相系统。分辨率提高了 30%,板效率提高了 90%。