Suppr超能文献

咀嚼器官的形态有利于在树洞挖掘的普通狨猴(Callithrix jacchus)中产生大张口时的肌肉力量。

The morphology of the masticatory apparatus facilitates muscle force production at wide jaw gapes in tree-gouging common marmosets (Callithrix jacchus).

机构信息

Department of Orthopaedic Surgery, University of California, San Diego, CA 92121, USA.

出版信息

J Exp Biol. 2009 Dec;212(Pt 24):4040-55. doi: 10.1242/jeb.029983.

Abstract

Common marmosets (Callithrix jacchus) generate wide jaw gapes when gouging trees with their anterior teeth to elicit tree exudate flow. Closely related cotton-top tamarins (Saguinus oedipus) do not gouge trees but share similar diets including exudates. Maximizing jaw opening theoretically compromises the bite forces that marmosets can generate during gouging. To investigate how jaw-muscle architecture and craniofacial position impact muscle performance during gouging, we combine skull and jaw-muscle architectural features to model muscle force production across a range of jaw gapes in these two species. We incorporate joint mechanics, resting sarcomere length and muscle architecture estimates from the masseter and temporalis to model muscle excursion, sarcomere length and relative tension as a function of joint angle. Muscle excursion from occlusion to an estimated maximum functional gape of 55 deg. was smaller in all regions of the masseter and temporalis of C. jacchus compared with S. oedipus except the posterior temporalis. As a consequence of reduced muscle excursion distributed over more sarcomeres in series (i.e. longer fibers), sarcomere length operating ranges are smaller in C. jacchus jaw muscles across this range of gapes. This configuration allows C. jacchus to act on a more favorable portion of the length-tension curve at larger gapes and thereby generate relatively greater tension in these muscles compared with S. oedipus. Our results suggest that biting performance during tree gouging in common marmosets is improved by a musculoskeletal configuration that reduces muscle stretch at wide gapes while simultaneously facilitating comparatively large muscle forces at the extremes of jaw opening.

摘要

普通狨猴(Callithrix jacchus)在以前牙挖树以引出树液流动时会产生宽的下颚张口。与其密切相关的棉顶狨(Saguinus oedipus)不挖树,但有相似的饮食,包括渗出物。理论上,最大限度地张开下颚会损害狨猴在挖树时产生的咬合力。为了研究下颚肌肉结构和颅面位置如何影响这两个物种在挖树过程中的肌肉性能,我们结合头骨和下颚肌肉结构特征,在这两个物种的一系列下颚张口范围内对肌肉力量产生进行建模。我们结合了关节力学、从咬肌和颞肌获得的静止肌节长度和肌肉结构估计值,以模型化肌肉在关节角度范围内的伸展、肌节长度和相对张力。从咬合到估计的最大功能张口 55 度的下颚肌肉的咬肌和颞肌的所有区域的肌肉伸展都比 S. oedipus 小,除了后颞肌。由于肌肉伸展分布在更多串联的肌节上(即更长的纤维),在这个张口范围内,C. jacchus 下颚肌肉的肌节长度操作范围较小。这种配置允许 C. jacchus 在更大的张口时作用于长度-张力曲线的更有利部分,从而在这些肌肉中产生相对较大的张力,与 S. oedipus 相比。我们的结果表明,普通狨猴在挖树过程中的咬噬性能通过一种肌肉骨骼配置得到改善,该配置减少了宽张口时的肌肉拉伸,同时在张口极限时促进了相对较大的肌肉力量。

相似文献

4
Comparative functional analysis of skull morphology of tree-gouging primates.
Am J Phys Anthropol. 2003 Feb;120(2):153-70. doi: 10.1002/ajpa.10129.
5
The functional morphology of the anterior masticatory apparatus in tree-gouging marmosets (Cebidae, Primates).
J Morphol. 2011 Jul;272(7):833-49. doi: 10.1002/jmor.10951. Epub 2011 Apr 15.
6
Craniofacial adaptations to tree-gouging among marmosets.
Anat Rec (Hoboken). 2011 Dec;294(12):2131-9. doi: 10.1002/ar.21500. Epub 2011 Nov 1.
9
Finite element analysis of performance in the skulls of marmosets and tamarins.
J Anat. 2011 Jan;218(1):151-62. doi: 10.1111/j.1469-7580.2010.01247.x.
10
Jaw-muscle fiber architecture in tufted capuchins favors generating relatively large muscle forces without compromising jaw gape.
J Hum Evol. 2009 Dec;57(6):710-20. doi: 10.1016/j.jhevol.2009.06.001. Epub 2009 Oct 28.

引用本文的文献

3
Pelage variation and morphometrics of closely related Callithrix marmoset species and their hybrids.
BMC Ecol Evol. 2024 Sep 20;24(1):122. doi: 10.1186/s12862-024-02305-3.
4
Gape drives regional variation in temporalis architectural dynamics in tufted capuchins.
Philos Trans R Soc Lond B Biol Sci. 2023 Dec 4;378(1891):20220550. doi: 10.1098/rstb.2022.0550. Epub 2023 Oct 16.
5
Behavioral correlates of fascicular organization: The confluence of muscle architectural anatomy and function.
Anat Rec (Hoboken). 2025 Apr;308(4):1265-1277. doi: 10.1002/ar.25187. Epub 2023 Mar 7.
6
Anatomical and ontogenetic influences on muscle density.
Sci Rep. 2021 Jan 22;11(1):2114. doi: 10.1038/s41598-021-81489-w.
7
Differences in muscle mechanics underlie divergent optimality criteria between feeding and locomotor systems.
J Anat. 2020 Dec;237(6):1072-1086. doi: 10.1111/joa.13279. Epub 2020 Jul 16.
10
Masticatory Apparatus Performance and Functional Morphology in the Extremely Large Mice from Gough Island.
Anat Rec (Hoboken). 2020 Jan;303(1):167-179. doi: 10.1002/ar.24053. Epub 2019 Jan 13.

本文引用的文献

3
Proclination of lower incisors: a design to maximize food penetration and minimize torque.
J Oral Rehabil. 2008 Nov;35(11):870-4. doi: 10.1111/j.1365-2842.2008.01884.x. Epub 2008 Aug 18.
4
The relationship between shape of the skull and bite force in finches.
J Exp Biol. 2008 May;211(Pt 10):1668-80. doi: 10.1242/jeb.015289.
5
Variable gearing in pennate muscles.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1745-50. doi: 10.1073/pnas.0709212105. Epub 2008 Jan 29.
6
High stiffness of human digital flexor tendons is suited for precise finger positional control.
J Neurophysiol. 2006 Nov;96(5):2815-8. doi: 10.1152/jn.00284.2006. Epub 2006 Jul 26.
7
Rotator cuff muscle architecture: implications for glenohumeral stability.
Clin Orthop Relat Res. 2006 Jul;448:157-63. doi: 10.1097/01.blo.0000194680.94882.d3.
8
Adaptation of healthy mastication to factors pertaining to the individual or to the food.
Physiol Behav. 2006 Aug 30;89(1):28-35. doi: 10.1016/j.physbeh.2006.02.013. Epub 2006 Apr 3.
9
Incisal orientation and biting efficiency.
J Hum Evol. 2006 Jun;50(6):663-72. doi: 10.1016/j.jhevol.2006.01.003. Epub 2006 Mar 10.
10
Biting efficiency in relation to incisal angulation.
Arch Oral Biol. 2006 Jun;51(6):491-7. doi: 10.1016/j.archoralbio.2005.11.002. Epub 2005 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验