Laboratoire Adhésion et Inflammation, INSERM U600, CNRS UMR 6212, Université de la Méditerranée, 163 Avenue de Luminy, Marseille F-13009, France.
Langmuir. 2010 Feb 2;26(3):1940-8. doi: 10.1021/la902504y.
We have developed a new and improved optical model of reflection interference contrast microscopy (RICM) to determine with a precision of a few nanometers the absolute thickness h of thin films on a flat surface in immersed conditions. The model takes into account multiple reflections between a planar surface and a multistratified object, finite aperture illumination (INA), and, for the first time, the polarization of light. RICM intensity I is typically oscillating with h. We introduce a new normalization procedure that uses the intensity extrema of the same oscillation order for both experimental and theoretical intensity values and permits us to avoid significant error in the absolute height determination, especially at high INA. We also show how the problem of solution degeneracy can be solved by taking pictures at two different INA values. The model is applied to filled polystyrene beads and giant unilamellar vesicles of radius 10-40 microm sitting on a glass substrate. The RICM profiles I(h) can be fitted for up to two to three oscillation orders, and extrema positions are correct for up to five to seven oscillation orders. The precision of the absolute distance and of the shape of objects near a substrate is about 5 nm in a range from 0 to 500 nm, even under large numerical aperture conditions. The method is especially valuable for dynamic RICM experiments and with living cells where large illumination apertures are required.
我们开发了一种新的改进的反射干涉对比显微镜(RICM)光学模型,以在浸入条件下将薄膜的绝对厚度 h 精确到几个纳米。该模型考虑了平面和多层物体之间的多次反射、有限孔径照明(INA),并且首次考虑了光的偏振。RICM 强度 I 通常随 h 而振荡。我们引入了一种新的归一化程序,该程序使用相同阶次的强度极值来处理实验和理论强度值,从而避免了在绝对高度确定中出现显著误差,特别是在高 INA 时。我们还展示了如何通过在两个不同的 INA 值下拍摄照片来解决解的退化问题。该模型应用于填充聚苯乙烯珠和半径为 10-40 微米的巨大单层囊泡,这些囊泡位于玻璃基板上。RICM 轮廓 I(h) 可以拟合多达两个到三个振荡阶次,极值位置对于多达五个到七个振荡阶次是正确的。在 0 到 500nm 的范围内,即使在大数值孔径条件下,靠近基板的物体的绝对距离和形状的精度也约为 5nm。该方法特别适用于动态 RICM 实验和需要大照明孔径的活细胞。