Institut des Sciences de la Terre de Paris (UMR 7193, UPMC-CNRS), UPMC-Paris Universitas, Paris 75005, France.
J Chem Phys. 2009 Nov 28;131(20):204701. doi: 10.1063/1.3251791.
Chrysotile single-layered nanotubes, obtained by wrapping the Mg(3)Si(2)O(5)(OH)(4) lizardite monolayer along the (n,-n) hexagonal lattice vector, are simulated at the ab initio level by using an all electron 6-31G( *) basis set and the B3LYP functional for n varying from 14 to 24 (the nanotube radius R referred to the oxygen connecting the Mg and Si layers increases from 20 to 35 A). Because of the full exploitation of the helical symmetry, recently implemented in the CRYSTAL code, the computational cost for the full self-consistent field (SCF) and gradient calculation increases only by a factor of 2 and 1.2, respectively, when passing from the lizardite monolayer [18 atoms and 236 AOs (atomic orbitals) in the unit cell] to the (24, -24) tube (864 atoms and 11,328 AOs). The total energy of the tubes is always larger than that of the lizardite monolayer; the difference DeltaE decreases very rapidly with n; for the largest tube here considered (n=24) DeltaE is as small as 2.7 kJ/mol per formula unit (f.u.); extrapolating to larger n values, at about R=50 A, DeltaE becomes smaller than 1 kJ mol f.u. Very large energy gains are observed for small n values during optimization after rolling, mainly due to the rotation of the SiO(4) tetrahedra that are in the inner part of the cylinder ("normal rolling"); such a rigid rotation accounts for about 85% of the overall relaxation energy. "Inverse rolling" tubes (SiO(4) on the external wall of the tube) are shown to be less stable than the corresponding "normal" tubes.
纤蛇纹石单层纳米管是通过沿(n,-n)六方晶格矢量包裹 Mg(3)Si(2)O(5)(OH)(4)纤蛇纹石单层获得的,在 ab initio 水平上使用全电子 6-31G( *)基组和 B3LYP 函数进行模拟,其中 n 从 14 变化到 24(纳米管半径 R 参考连接 Mg 和 Si 层的氧,从 20 增加到 35 A)。由于最近在 CRYSTAL 代码中实现了螺旋对称性的充分利用,从纤蛇纹石单层([18 个原子和 236 个原子轨道(AO)在单元中]到(24,-24)管(864 个原子和 11,328 个 AO)通过全自洽场(SCF)和梯度计算的计算成本仅分别增加了 2 倍和 1.2 倍。管的总能量总是大于纤蛇纹石单层的总能量;差异 DeltaE 随 n 的快速减小;对于这里考虑的最大管(n=24),DeltaE 每个配方单位(f.u.)小至 2.7 kJ/mol;外推到更大的 n 值,在大约 R=50 A 处,DeltaE 变得小于 1 kJ mol f.u.在滚动后的优化过程中,对于较小的 n 值,观察到非常大的能量增益,主要是由于位于圆柱体内部的 SiO(4)四面体的旋转(“正常滚动”);这种刚性旋转约占总弛豫能的 85%。与相应的“正常”管相比,“反向滚动”管(管外壁上的 SiO(4))显示出较低的稳定性。