Suppr超能文献

GO-At:通过组合异种数据对拟南芥基因功能进行的计算机预测。

GO-At: in silico prediction of gene function in Arabidopsis thaliana by combining heterogeneous data.

机构信息

Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.

出版信息

Plant J. 2010 Feb;61(4):713-21. doi: 10.1111/j.1365-313X.2009.04097.x. Epub 2009 Nov 27.

Abstract

Despite recent advances, accurate gene function prediction remains an elusive goal, with very few methods directly applicable to the plant Arabidopsis thaliana. In this study, we present GO-At (gene ontology prediction in A. thaliana), a method that combines five data types (co-expression, sequence, phylogenetic profile, interaction and gene neighbourhood) to predict gene function in Arabidopsis. Using a simple, yet powerful two-step approach, GO-At first generates a list of genes ranked in descending order of probability of functional association with the query gene. Next, a prediction score is automatically assigned to each function in this list based on the assumption that functions appearing most frequently at the top of the list are most likely to represent the function of the query gene. In this way, the second step provides an effective alternative to simply taking the 'best hit' from the first list, and achieves success rates of up to 79%. GO-At is applicable across all three GO categories: molecular function, biological process and cellular component, and can assign functions at multiple levels of annotation detail. Furthermore, we demonstrate GO-At's ability to predict functions of uncharacterized genes by identifying ten putative golgins/Golgi-associated proteins amongst 8219 genes of previously unknown cellular component and present independent evidence to support our predictions. A web-based implementation of GO-At (http://www.bioinformatics.leeds.ac.uk/goat) is available, providing a unique resource for plant researchers to make predictions for uncharacterized genes and predict novel functions in Arabidopsis.

摘要

尽管最近取得了一些进展,但准确预测基因功能仍然是一个难以实现的目标,很少有方法可以直接应用于拟南芥等植物。在这项研究中,我们提出了 GO-At(拟南芥基因本体论预测),这是一种结合了五种数据类型(共表达、序列、系统发育谱、相互作用和基因邻域)来预测拟南芥基因功能的方法。GO-At 采用简单而强大的两步法,首先根据查询基因与功能关联的概率,将基因按降序排列生成基因列表。然后,根据排在列表顶部的功能最有可能代表查询基因的功能这一假设,自动为列表中的每个功能分配预测分数。通过这种方式,第二步提供了一种替代简单地从第一个列表中选择“最佳命中”的有效方法,成功率高达 79%。GO-At 适用于分子功能、生物过程和细胞成分这三个 GO 类别,可以在多个注释细节级别上分配功能。此外,我们通过在 8219 个先前未知细胞成分的基因中鉴定出十个假定的 golgins/Golgi 相关蛋白,证明了 GO-At 预测未鉴定基因功能的能力,并提供了独立的证据来支持我们的预测。GO-At 的一个基于网络的实现(http://www.bioinformatics.leeds.ac.uk/goat)已经可用,为植物研究人员提供了一个独特的资源,用于对未鉴定的基因进行预测,并预测拟南芥中的新功能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验