Suppr超能文献

花岗质体系的力学和最大熵产生率。

The mechanics of granitoid systems and maximum entropy production rates.

机构信息

CSIRO Exploration and Mining, PO Box 1130, Bentley, WA 6102, Australia.

出版信息

Philos Trans A Math Phys Eng Sci. 2010 Jan 13;368(1910):53-93. doi: 10.1098/rsta.2009.0202.

Abstract

A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate.

摘要

建立了一个涉及熔体在上升等温线下方空间产生的花岗质体系形成模型,该等温线定义了熔体的起始。在 10(4)-10(7)年内形成花岗质杂岩体所需的熔体体积的产生,要求通过熔体对流控制等温线速度。该速度是控制空间上刚好在熔体等温线之上的熔体通量的一个控制因素,这是控制整个花岗质体系行为的控制阀。熔体传输发生在由包含源自 Gurson-Tvergaard 本构行为的熔体包裹体的薄片或管组成的管道中。这些管道表现为与线理和叶理平行的浅色体,以及韧性和脆性的岩脉。在熔体等温线处产生的熔体通量控制着熔体固相线的位置,从而控制着传输/就位带的物理高度。由熔体粘度和本构行为变化驱动的管道宽度选择过程在传输带内运行,以逐渐向上增加孔径的宽度。熔体也可以通过地形梯度水平驱动;这些水平通量的大小可能与垂直通量相似。变形引起的通量可以在所有长度尺度上与浮力和地形驱动的流动竞争,从而导致局部瞬态“熔体池”。岩基的就位受熔体/岩浆的本构行为从高温下的弹粘性向接近熔体固相线的弹塑性粘性的转变控制,从而使有限厚度的岩基得以发育。该系统涉及到耦合的反馈过程,这些过程以系统提供的热量为代价而增长,并与熔体对流竞争。结果是对系统的大小和时间尺度施加了限制。系统的最佳特征与最大熵产生率状态相吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验