Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA.
Proteins. 2010 Apr;78(5):1254-65. doi: 10.1002/prot.22644.
Group II chaperonins, found in eukaryotic and archaeal organisms, recognize substrate proteins through diverse mechanisms that involve either hydrophobic- or electrostatic-dominated interactions. This action is distinct from the universal substrate recognition mechanism of group I chaperonins, which bind a wide spectrum of non-native proteins primarily through hydrophobic interactions. We use computational approaches to pinpoint the substrate protein binding sites of the gamma-subunit of the eukaryotic chaperonin CCT and to identify its interactions with the stringent substrate beta-tubulin. Protein-protein docking methods reveal intrinsic binding sites of CCT comprising a helical (HL) region, homologous to the GroEL-binding site, and the helical protrusion (HP) region. We performed molecular dynamics simulations of the solvated CCTgamma apical domain, beta-tubulin peptide-CCTgamma complexes, and isolated beta-tubulin peptides. We find that tubulin binds to CCTgamma through an extensive interface that spans both the HL region and the HP region. HL interactions involve both hydrophobic and electrostatic contacts, while binding to the HP region is stabilized almost exclusively by a salt bridge network. On the basis of additional simulations of a beta-tubulin-CCTgamma complex that involves a reduced interface, centered onto the HP region, we conclude that this salt bridge network is the minimal stabilizing interaction required. Strong conservation of the charged amino acids that participate in the salt bridge network, Arg306 and Glu271, indicates a general mechanism across the nonidentical CCT subunits and group II chaperonins.
II 类分子伴侣存在于真核生物和古菌中,通过涉及疏水或静电主导相互作用的不同机制识别底物蛋白。这种作用与 I 类分子伴侣的通用底物识别机制不同,I 类分子伴侣主要通过疏水相互作用结合广泛的非天然蛋白质。我们使用计算方法来确定真核伴侣 CCT 的γ亚基的底物蛋白结合位点,并鉴定其与严格底物β-微管蛋白的相互作用。蛋白质-蛋白质对接方法揭示了 CCT 的固有结合位点,包括与 GroEL 结合位点同源的螺旋(HL)区域和螺旋突出(HP)区域。我们对水合 CCTγ顶端结构域、β-微管蛋白肽-CCTγ复合物和分离的β-微管蛋白肽进行了分子动力学模拟。我们发现微管蛋白通过跨越 HL 区域和 HP 区域的广泛界面与 CCTγ结合。HL 相互作用涉及疏水和静电接触,而与 HP 区域的结合则几乎完全由盐桥网络稳定。基于涉及减少的界面、以 HP 区域为中心的β-微管蛋白-CCTγ复合物的额外模拟,我们得出结论,该盐桥网络是所需的最小稳定相互作用。参与盐桥网络的带电氨基酸(Arg306 和 Glu271)的强烈保守性表明,这是一个普遍的机制,涉及到非同源的 CCT 亚基和 II 类分子伴侣。