Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia.
Langmuir. 2010 Jan 19;26(2):736-42. doi: 10.1021/la903583r.
A simple photometric method for determining the electrophoretic mobility of nano- and microparticles in reverse micelles and in solvents with a low dielectric permittivity (2-5) has been developed. The method is based on the use of a thermostatically controlled diaphragm-based optical cell (length 2 cm) with three vertical plane-parallel electrodes (2 x 3 cm; interelectrode gap, 0.3 cm) placed into a standard photocolorimeter. When an electrostatic field (100-600 V) is applied, the particles begin to move away from the electrode of the same polarity. The path traveled by the particles for a given time (2-30 s) is calculated from the change in the optical density of the solution in the near-electrode zone. The electrophoretic potential of nanoparticles in the model systems, calculated from the values of electrophoretic mobility by Huckel-Onsager theory, varied from 70 (Ag nanoparticles in AOT micelles in decane) to -73 mV (aggregated SiO(2) nanoparticles in a decane-chloroform mixture). Calculations by the classical Deryaguin-Landau-Verwey-Overbeek (DLVO) theory determined the contribution of the electrostatic interaction to the stability of the studied systems. We have shown that the surface charge of nanoparticles permits: (1) an electrophoretic concentration of the charged nanoparticles (Ag) with an enrichment factor of up to 10(4), (2) the separation of nanoparticles with zero (C(60)) and a high (Ag) electrokinetic potentials, and (3) the formation of electrostatically bound aggregates (Ag-SiO(2)) through the heterocoagulation of oppositely charged particles.
已经开发出一种简单的光密度法,用于测定反胶束和介电常数低的溶剂(2-5)中纳米和微米颗粒的电泳迁移率。该方法基于使用带有三个垂直平面平行电极(2 x 3 cm;电极间隙为 0.3 cm)的恒温控制膜片式光学池(长度为 2 cm),该光学池置于标准光电比色计中。当施加静电场(100-600 V)时,颗粒开始从相同极性的电极处移动。通过在近电极区溶液的光密度变化计算给定时间(2-30 s)内颗粒的行进路径。根据 Huckel-Onsager 理论计算的模型体系中纳米颗粒的电泳势,从 70(AOT 胶束中的 Ag 纳米颗粒在癸烷中)到-73 mV(癸烷-氯仿混合物中的聚集 SiO2 纳米颗粒)不等。经典的 Deryaguin-Landau-Verwey-Overbeek(DLVO)理论计算确定了静电相互作用对研究体系稳定性的贡献。我们已经表明,纳米颗粒的表面电荷允许:(1)带电荷的纳米颗粒(Ag)的电泳浓缩,富集因子高达 10(4),(2)零(C(60))和高(Ag)电动电位的纳米颗粒的分离,以及(3)通过异质凝聚形成静电结合的聚集体(Ag-SiO2)。