Satoh H, Barrett J C, Oshimura M
Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709.
Exp Cell Res. 1991 Mar;193(1):5-11. doi: 10.1016/0014-4827(91)90531-x.
The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter----3p12::Xq26----Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions (HAT medium) for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. In order to introduce a second selectable genetic marker to the t(X;3) chromosome, A9(GM0439)-1 cells were transfected with pcDneo plasmid DNA. Colonies resistant to both G418 and HAT medium (G418r/HATr) were selected. To obtain A9 cells that contained a t(X;3) chromosome with an integrated neo gene, the microcell transfer step was repeated and doubly resistant cells were selected. G418r/HATr colonies arose at a frequently of 0.09 to 0.23 x 10(-6) per recipient cell. Of seven primary microcell hybrid clones, four yielded G418r/HATr clones at a detectable frequency (0.09 to 3.4 x 10(-6)) after a second round of microcell transfer. Doubly resistant cells were not observed after microcell chromosome transfers from three clones, presumably because the markers were on different chromosomes. The secondary G418r/HATr microcell hybrids contained at least one copy of the human t(X;3) chromosome and in situ hybridization with one of these clones confirmed the presence of a neo-tagged t(X;3) human chromosome. These results demonstrate that microcell chromosome transfer can be used to select chromosomes containing multiple markers.
本研究的目的是利用DNA转染和微细胞染色体转移技术构建一条含有多种生化标记物的人类染色体,且存在可供选择的生长条件。起始染色体是来自正常人成纤维细胞系GM0439中一个相互易位的t(X;3)(3pter----3p12::Xq26----Xpter)染色体。通过微细胞融合将该染色体转移到一个缺乏次黄嘌呤磷酸核糖转移酶(HPRT)的小鼠A9细胞系中,并在针对人类t(X;3)染色体上HPRT基因的生长条件(HAT培养基)下进行筛选。得到的一株对HAT有抗性的细胞系(A9(GM0439)-1)含有一条单一的人类t(X;3)染色体。为了给t(X;3)染色体引入第二个可供选择的遗传标记,用pcDneo质粒DNA转染A9(GM043)(GM0439)-1细胞。筛选出对G418和HAT培养基均有抗性的菌落(G418r/HATr)。为了获得含有整合了新霉素基因的t(X;3)染色体的A9细胞,重复微细胞转移步骤并筛选出双重抗性细胞。G418r/HATr菌落出现的频率为每接受细胞0.09至0.23×10(-6)。在七个初级微细胞杂交克隆中,有四个在第二轮微细胞转移后以可检测到的频率(0.09至3.4×10(-6))产生了G418r/HATr克隆。从三个克隆进行微细胞染色体转移后未观察到双重抗性细胞,推测是因为标记物位于不同的染色体上。第二代G418r/HATr微细胞杂种至少含有一条人类t(X;3)染色体的拷贝,对其中一个克隆进行原位杂交证实了存在一条带有新霉素标记的t(X;3)人类染色体。这些结果表明,微细胞染色体转移可用于筛选含有多个标记的染色体。