Department of Molecular Virology, Immunology and Medical Genetics, and Comprehensive Cancer Center, The Ohio State University, 460 W. 12th Avenue, Rm 996 Biomedical Research Tower, Columbus, OH 43210, USA.
Mutat Res. 2010 Feb 3;684(1-2):56-65. doi: 10.1016/j.mrfmmm.2009.11.007. Epub 2009 Nov 30.
The MutS protein controls genomic stability by coordinating recognition and repair of DNA mismatches with ATP utilization. The nature of this coordination is unclear. This study demonstrates the importance of a highly conserved flexible loop found in Escherichia coli MutS (residues 658-670) in DNA mismatch repair. This loop is speculated to be analogous to the ABC signature motif of drug transporters based on its proximity to the ATP catalytic site in crystal structures. Our studies show that amino acid residues G666 and S668 control MutS functions subsequent to mismatch recognition by MutS, i.e., nucleotide-mediated exchange and ATP-dependent dissociation from mismatch. G666V mutation affects mismatch-provoked ADP-ATP exchange and results in slower dissociation kinetics of MutS from the mismatch while S668A mutation affects stable clamp formation and dissociation kinetics but does not affect nucleotide exchange. Both mutants harbor defects in ATP hydrolysis and cause a significant mutator phenotype in vivo. The mutator effect of S668A is indistinguishable from that of a MutS-deficient background and is similar to that seen with G658A. Neither mutations affect protein stability or cause a dominant mutator effect. Together with our studies on G658, D661 and F670 [1], this study implicates the signature motif as a primary regulator of MutS function and suggests concerted action of the individual amino acid residues within this motif in mediating communication between the Walker and mismatch recognition domains.
MutS 蛋白通过协调利用 ATP 识别和修复 DNA 错配来控制基因组稳定性。这种协调的性质尚不清楚。本研究证明了在大肠杆菌 MutS 中发现的高度保守的灵活环(残基 658-670)在 DNA 错配修复中的重要性。根据其在晶体结构中接近 ATP 催化位点的位置,推测该环类似于药物转运蛋白的 ABC 签名基序。我们的研究表明,氨基酸残基 G666 和 S668 控制 MutS 在后于错配识别的功能,即核苷酸介导的交换和 ATP 依赖性从错配的解离。G666V 突变影响错配引发的 ADP-ATP 交换,导致 MutS 从错配的解离动力学变慢,而 S668A 突变影响稳定的夹合形成和解离动力学,但不影响核苷酸交换。这两种突变体都存在 ATP 水解缺陷,并导致体内出现明显的突变表型。S668A 的突变效应与 MutS 缺失背景的突变效应无法区分,与 G658A 所见的突变效应相似。这两种突变都不影响蛋白质稳定性或导致显性突变效应。与我们对 G658、D661 和 F670 的研究一起[1],本研究表明签名基序是 MutS 功能的主要调节剂,并表明该基序中各个氨基酸残基在介导 Walker 和错配识别结构域之间的通讯方面协同作用。