Suppr超能文献

An effective method of pruning support vector machine classifiers.

作者信息

Liang Xun

机构信息

Institute of Computer Science and Technology, Peking University, Beijing 100871, China.

出版信息

IEEE Trans Neural Netw. 2010 Jan;21(1):26-38. doi: 10.1109/TNN.2009.2033677. Epub 2009 Dec 1.

Abstract

Support vector machine (SVM) classifiers often contain many SVs, which lead to high computational cost at runtime and potential overfitting. In this paper, a practical and effective method of pruning SVM classifiers is systematically developed. The kernel row vectors, with one-to-one correspondence to the SVs, are first organized into clusters. The pruning work is divided into two phases. In the first phase, orthogonal projections (OPs) are performed to find kernel row vectors that can be approximated by the others. In the second phase, the previously found vectors are removed, and crosswise propagations, which simply utilize the coefficients of OPs, are implemented within each cluster. The method circumvents the problem of explicitly discerning SVs in the high-dimensional feature space as the SVM formulation does, and does not involve local minima. With different parameters, 3000 experiments were run on the LibSVM software platform. After pruning 42% of the SVs, the average change in classification accuracy was only - 0.7%, and the average computation time for removing one SV was 0.006 of the training time. In some scenarios, over 90% of the SVs were pruned with less than 0.1% reduction in classification accuracy. The experiments demonstrate the existence of large numbers of superabundant SVs in trained SVMs, and suggest a synergistic use of training and pruning in practice. Many SVMs already used in applications could be upgraded by pruning nearly half of their SVs.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验