Skrable K W, Phoenix K A, Chabot G E, French C S, Jo M, Falo G A
University of Lowell, MA 01854.
Health Phys. 1991 Mar;60(3):381-92. doi: 10.1097/00004032-199103000-00008.
The classic problem of alpha absorption is discussed in terms of the quantitative determination of the activity of "weightless" alpha sources and the specific alpha activity of extended sources accounting for absorption in the source medium and the window of a large area ZnS(Ag) scintillation detector. The relationship for the expected counting rate gamma of a monoenergetic source of active area A, specific alpha activity C, and thickness H that exceeds the effective mass density range Rs of the alpha particle in the source medium can be expressed by a quadratic equation in the window thickness x when this source is placed in direct contact with the window of the ZnS(Ag) detector. This expression also gives the expected counting rate of a finite detector of sensitive area A exposed to an infinite homogeneous source medium. Counting rates y obtained for a source separated from a ZnS(Ag) detector by different thicknesses x of window material can be used to estimate parameter values in the quadratic equation, y = a + bx + cx2. The experimental value determined for the coefficient b provides a direct estimation of the specific activity C. This coefficient, which depends on the ratio of the ranges in the source medium and detector window and not the ranges themselves, is essentially independent of the energy of the alpha particle. Although certain experimental precautions must be taken, this method for estimating the specific activity C is essentially an absolute method that does not require the use of standards, special calibrations, or complicated radiochemical procedures. Applications include the quantitative determination of Rn and progeny in air, water, and charcoal, and the measurement of the alpha activity in soil and on air filter samples.
从“失重”α源活度的定量测定以及扩展源的比α活度方面讨论了经典的α吸收问题,其中考虑了源介质和大面积ZnS(Ag)闪烁探测器窗口中的吸收情况。当活性面积为A、比α活度为C且厚度H超过源介质中α粒子有效质量密度范围Rs的单能源与ZnS(Ag)探测器窗口直接接触时,预期计数率γ与窗口厚度x的关系可由一个二次方程表示。该表达式还给出了暴露于无限均匀源介质的敏感面积为A的有限探测器的预期计数率。对于通过不同厚度x的窗口材料与ZnS(Ag)探测器隔开的源所获得的计数率y,可用于估计二次方程y = a + bx + cx²中的参数值。实验测定的系数b值可直接估算比活度C。该系数取决于源介质和探测器窗口中的射程比,而非射程本身,基本上与α粒子的能量无关。尽管必须采取某些实验预防措施,但这种估算比活度C的方法本质上是一种绝对方法,无需使用标准物质、特殊校准或复杂的放射化学程序。其应用包括空气中、水中和木炭中Rn及其子体的定量测定,以及土壤和空气过滤器样品中α活度的测量。