Graduate University for Advanced Studies, Hayama, Kanagawa, Japan.
Mol Biol Evol. 2010 Apr;27(4):896-904. doi: 10.1093/molbev/msp295. Epub 2009 Dec 2.
It has been proposed that the insertion time of a long terminal repeat (LTR) retrotransposon can be estimated by the divergence between the two LTRs at the both ends because their sequences were identical at the insertion event. This method is based on the assumption that the two LTRs accumulate point mutations independently; therefore, the divergence reflects the time since the insertion event. However, if gene conversion occurs between LTRs, the nucleotide divergence will be much smaller than expected with the assumption of the independent accumulation of point mutations. To examine this assumption, we investigated the extent of gene conversion between LTRs by applying a comparative genomic approach to primates (humans and rhesus macaques) and rodents (mice and rats). We found that gene conversion plays a significant role in the molecular evolution of LTRs in primates and rodents, but the extent is quite different. In rodents, most LTRs are subject to extensive gene conversion that reduces the divergence, so that the divergence-based method results in a serious underestimation of the insertion time. In primates, this effect is limited to a small proportion of LTRs. The most likely explanation of the difference involves the minimum length of the interacting sequence (minimal efficient processing segment [MEPS]) for interlocus gene conversion. An empirical estimate of MEPS in human is 300-500 bp, which exceeds the length of most of the analyzed LTRs. In contrast, MEPS for mice should be much smaller. Thus, MEPS can be an important factor to determine the susceptibility of LTRs to gene conversion, although there are many other factors involved. It is concluded that the divergence method to estimate the insertion time should be applied with special caution because at least some LTRs undergo gene conversion.
有人提出,通过比较长末端重复序列(LTR)两端的两个 LTR 之间的差异,可以估计 LTR 插入的时间,因为在插入事件中,它们的序列是相同的。这种方法基于这样的假设:两个 LTR 独立积累点突变;因此,差异反映了插入事件发生的时间。然而,如果 LTR 之间发生基因转换,核苷酸差异将比假设独立积累点突变小得多。为了检验这一假设,我们通过应用比较基因组学方法研究了灵长类动物(人类和恒河猴)和啮齿类动物(小鼠和大鼠)之间 LTR 之间基因转换的程度。我们发现,基因转换在灵长类动物和啮齿类动物的 LTR 分子进化中起着重要作用,但程度却大不相同。在啮齿类动物中,大多数 LTR 都受到广泛的基因转换的影响,从而降低了差异,使得基于差异的方法严重低估了插入时间。在灵长类动物中,这种影响仅限于一小部分 LTR。造成这种差异的最可能解释涉及基因转换的位点间最小有效处理片段(minimal efficient processing segment [MEPS])的最小长度。人类中 MEPS 的经验估计值为 300-500bp,超过了大多数分析的 LTR 的长度。相比之下,小鼠的 MEPS 应该小得多。因此,MEPS 可以是决定 LTR 对基因转换易感性的重要因素,尽管还有许多其他因素涉及其中。总之,由于至少一些 LTR 经历了基因转换,因此应该特别谨慎地应用差异方法来估计插入时间。