Gal-Yam A, Mazzali P, Ofek E O, Nugent P E, Kulkarni S R, Kasliwal M M, Quimby R M, Filippenko A V, Cenko S B, Chornock R, Waldman R, Kasen D, Sullivan M, Beshore E C, Drake A J, Thomas R C, Bloom J S, Poznanski D, Miller A A, Foley R J, Silverman J M, Arcavi I, Ellis R S, Deng J
Benoziyo Center for Astrophysics, Faculty of Physics, The Weizmann Institute of Science, Rehovot 76100, Israel.
Nature. 2009 Dec 3;462(7273):624-7. doi: 10.1038/nature08579.
Stars with initial masses such that 10M[symbol: see text] <or= M(initial) <or= 100M[symbol: see text], where M[symbol: see text] is the solar mass, fuse progressively heavier elements in their centres, until the core is inert iron. The core then gravitationally collapses to a neutron star or a black hole, leading to an explosion-an iron-core-collapse supernova. By contrast, extremely massive stars with M(initial) >or= 140M[symbol: see text] (if such exist) develop oxygen cores with masses, M(core), that exceed 50M[symbol: see text], where high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs before oxygen ignition and leads to a violent contraction which triggers a nuclear explosion that unbinds the star in a pair-instability supernova. Transitional objects with 100M[symbol: see text] < M(initial) < 140M[symbol: see text] may end up as iron-core-collapse supernovae following violent mass ejections, perhaps as a result of brief episodes of pair instability, and may already have been identified. Here we report observations of supernova SN 2007bi, a luminous, slowly evolving object located within a dwarf galaxy. We estimate the exploding core mass to be M(core) approximately 100M[symbol: see text], in which case theory unambiguously predicts a pair-instability supernova. We show that >3M[symbol: see text] of radioactive (56)Ni was synthesized during the explosion and that our observations are well fitted by models of pair-instability supernovae. This indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic stellar mass limit, which perhaps result from processes similar to those that created the first stars in the Universe.
初始质量满足10M⊙≤M(初始)≤100M⊙(其中M⊙为太阳质量)的恒星,会在其核心逐渐融合越来越重的元素,直至核心成为惰性铁。然后,核心会因引力坍缩成中子星或黑洞,引发一次爆炸——铁芯坍缩超新星爆发。相比之下,初始质量M(初始)≥140M⊙的极其巨大的恒星(如果存在的话)会形成质量M(核心)超过50M⊙的氧核,在相对较低的密度下就能达到高温。在氧点火之前,高能的、提供压力支撑的光子会转化为电子 - 正电子对,导致剧烈收缩,引发核爆炸,使恒星在对不稳定性超新星爆发中解体。质量在100M⊙<M(初始)<140M⊙之间的过渡天体,可能在剧烈的质量抛射后最终成为铁芯坍缩超新星,这或许是短暂的对不稳定性事件的结果,并且可能已经被识别出来了。在此,我们报告对超新星SN 2007bi的观测结果,它是一个位于矮星系内的明亮、演化缓慢的天体。我们估计爆发核心的质量约为M(核心)≈100M⊙,在这种情况下,理论明确预测会发生对不稳定性超新星爆发。我们表明,在爆炸过程中合成了超过3M⊙ 的放射性(56)Ni,并且我们的观测结果与对不稳定性超新星模型拟合得很好。这表明附近的矮星系可能存在质量超过银河系明显恒星质量极限的极其巨大的恒星,它们可能是由类似于宇宙中第一批恒星形成的过程产生的。