Suppr超能文献

芯片上的活细胞和颗粒的介电泳共组装成响应性生物材料。

On-chip dielectrophoretic coassembly of live cells and particles into responsive biomaterials.

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA.

出版信息

Langmuir. 2010 Mar 2;26(5):3441-52. doi: 10.1021/la902989r.

Abstract

We report how live cells and functionalized colloidal particles can be coassembled into a variety of freely suspended bioactive structures using dielectrophoresis on a chip. Alternating electric fields were applied to dilute suspensions of yeast (S. cerevisiae) and NIH/3T3 mouse fibroblast cells to yield 1D chains and 2D arrays. The effects of voltage, frequency, pH, electrolyte concentration, cell concentration, and particle size on the assembly process were investigated in detail. Numerical simulations of the field intensity and energy allow the capture of the dynamics of cell-cell and cell-particle assembly. The simulation results illustrate that the electric field draws the functionalized synthetic particles between the cells and enables the formation of permanent chains and monolayer membranes composed of alternating cells and particles. The cell structures were bound into permanent structures by different types of functionalized synthetic particles and ligands that attached to the cells through biospecific or electrostatic interactions. The technique allowed the fabrication of magnetically responsive biomaterials that could be manipulated and transported into and out of the microchambers where they were formed.

摘要

我们报告了如何使用芯片上的电介质电泳将活细胞和功能化胶体颗粒共组装成各种自由悬浮的生物活性结构。将交替电场应用于酵母(S. cerevisiae)和 NIH/3T3 小鼠成纤维细胞的稀悬浮液中,以产生 1D 链和 2D 阵列。详细研究了电压、频率、pH 值、电解质浓度、细胞浓度和颗粒大小对组装过程的影响。场强和能量的数值模拟允许捕获细胞间和细胞-颗粒组装的动力学。模拟结果表明,电场将功能化的合成颗粒拉到细胞之间,从而形成由交替的细胞和颗粒组成的永久链和单层膜。通过不同类型的通过生物特异性或静电相互作用附着在细胞上的功能化合成颗粒和配体,将细胞结构结合成永久结构。该技术允许制造对磁响应的生物材料,这些材料可以被操纵并运入和运出形成它们的微腔室。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验