Department of Bioinformatics, School of Biotechnology, West Bengal University of Technology BF-142, Salt Lake, Kolkata 700064, India.
BMC Genomics. 2009 Dec 3;10 Suppl 3(Suppl 3):S19. doi: 10.1186/1471-2164-10-S3-S19.
The PolyGalacturonase-Inhibiting Proteins (PGIP) of plant cell wall limit the invasion of phytopathogenic organisms by interacting with the enzyme PolyGalacturonase (PG) they secrete to degrade pectin present in the cell walls. PGIPs from different or same plant differ in their inhibitory activity towards the same PG. PGIP2 from Phaseolus vulgaris (Pv) inhibits the PG from Fusarium moniliforme (Fm) although PGIP1, another member of the multigene family from the same plant sharing 99% sequence similarity, cannot. Interestingly, PGIP3 from Glycine max (Gm) which is a homologue of PGIP2 is capable of inhibiting the same PG although the extent of similarity is lower and is 88%. It therefore appears that subtle changes in the sequence of plant PGIPs give rise to different specificity for inhibiting pathogenic PGs and there exists no direct dependence of function on the extent of sequence similarity.
Structural information for any PGIP-PG complex being absent, we resorted to molecular modelling to gain insight into the mechanism of recognition and discrimination of PGs by PGIPs. We have built homology models of PvPGIP1 and GmPGIP3 using the crystal structure of PvPGIP2 (1OGQ) as template. These PGIPs were then docked individually to FmPG to elucidate the characteristics of their interactions. The mode of binding for PvPGIP1 to FmPG considerably differs from the mode observed for PvPGIP2-FmPG complex, regardless of the high sequence similarity the two PGIPs share. Both PvPGIP2 and GmPGIP3 despite being relatively less similar, interact with residues of FmPG that are known from mutational studies to constitute the active site of the enzyme. PvPGIP1 tends to interact with residues not located at the active site of FmPG. Looking into the electrostatic potential surface for individual PGIPs, it was evident that a portion of the interacting surface for PvPGIP1 differs from the corresponding region of PvPGIP2 or GmPGIP3.
van der Waals and electrostatic interactions play an active role in PGIPs for proper recognition and discrimination of PGs. Docking studies reveal that PvPGIP2 and GmPGIP3 interact with the residues constituting the active site of FmPG with implications that the proteins bind/block FmPG at its active site and thereby inhibit the enzyme.
植物细胞壁中的多聚半乳糖醛酸酶抑制蛋白(PGIP)通过与它们分泌的降解细胞壁中果胶的多聚半乳糖醛酸酶(PG)相互作用,限制了植物病原生物的入侵。来自不同植物或同一植物的 PGIP 在抑制同一 PG 的活性方面存在差异。菜豆(Pv)的 PGIP2 抑制镰孢菌(Fm)的 PG,尽管来自同一植物的多基因家族的另一个成员 PGIP1 具有 99%的序列相似性,但不能抑制该 PG。有趣的是,大豆(Gm)的 PGIP3 是 PGIP2 的同源物,尽管相似性程度较低,为 88%,但能够抑制相同的 PG。因此,植物 PGIP 序列的微小变化导致了对致病 PG 抑制的特异性不同,并且功能上不存在对序列相似性程度的直接依赖。
由于没有任何 PGIP-PG 复合物的结构信息,我们采用分子建模来深入了解 PGIP 识别和区分 PG 的机制。我们使用 PvPGIP2(1OGQ)的晶体结构作为模板,构建了 PvPGIP1 和 GmPGIP3 的同源模型。然后,我们将这些 PGIP 分别对接至 FmPG,以阐明它们相互作用的特征。PvPGIP1 与 FmPG 的结合方式与观察到的 PvPGIP2-FmPG 复合物的方式有很大不同,尽管这两种 PGIP 具有很高的序列相似性。尽管相对不太相似,PvPGIP2 和 GmPGIP3 都与突变研究已知构成酶活性位点的 FmPG 残基相互作用。PvPGIP1 倾向于与不位于 FmPG 活性位点的残基相互作用。查看单个 PGIP 的静电势表面,显然 PvPGIP1 的一部分相互作用表面与 PvPGIP2 或 GmPGIP3 的对应区域不同。
范德华力和静电相互作用在 PGIP 中对 PG 的正确识别和区分起着积极的作用。对接研究表明,PvPGIP2 和 GmPGIP3 与构成 FmPG 活性位点的残基相互作用,这意味着这些蛋白质在其活性位点与 FmPG 结合/阻断,从而抑制该酶。