Suppr超能文献

采用集成地理知识发现方法的多变量分析与地理可视化

Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach.

作者信息

Guo Diansheng, Gahegan Mark, Maceachren Alan M, Zhou Biliang

机构信息

Department of Geography, University of South Carolina, 709 Bull Street, Columbia, SC 29208. E-mail: <

出版信息

Cartogr Geogr Inf Sci. 2005 Apr 1;32(2):113-132. doi: 10.1559/1523040053722150.

Abstract

The discovery, interpretation, and presentation of multivariate spatial patterns are important for scientific understanding of complex geographic problems. This research integrates computational, visual, and cartographic methods together to detect and visualize multivariate spatial patterns. The integrated approach is able to: (1) perform multivariate analysis, dimensional reduction, and data reduction (summarizing a large number of input data items in a moderate number of clusters) with the Self-Organizing Map (SOM); (2) encode the SOM result with a systematically designed color scheme; (3) visualize the multivariate patterns with a modified Parallel Coordinate Plot (PCP) display and a geographic map (GeoMap); and (4) support human interactions to explore and examine patterns. The research shows that such "mixed initiative" methods (computational and visual) can mitigate each other's weakness and collaboratively discover complex patterns in large geographic datasets, in an effective and efficient way.

摘要

多元空间模式的发现、解释和呈现对于科学理解复杂的地理问题至关重要。本研究将计算、视觉和制图方法整合在一起,以检测和可视化多元空间模式。这种综合方法能够:(1)使用自组织映射(SOM)进行多元分析、降维和数据约简(在适度数量的聚类中总结大量输入数据项);(2)用系统设计的配色方案对SOM结果进行编码;(3)用改进的平行坐标图(PCP)显示和地理地图(GeoMap)可视化多元模式;(4)支持人机交互以探索和检查模式。研究表明,这种“混合主动”方法(计算和视觉)可以相互弥补不足,以有效且高效的方式在大型地理数据集中协同发现复杂模式。

相似文献

1
Multivariate Analysis and Geovisualization with an Integrated Geographic Knowledge Discovery Approach.
Cartogr Geogr Inf Sci. 2005 Apr 1;32(2):113-132. doi: 10.1559/1523040053722150.
2
A visualization system for space-time and multivariate patterns (VIS-STAMP).
IEEE Trans Vis Comput Graph. 2006 Nov-Dec;12(6):1461-74. doi: 10.1109/TVCG.2006.84.
5
Improving cluster visualization in self-organizing maps: application in gene expression data analysis.
Comput Biol Med. 2007 Dec;37(12):1677-89. doi: 10.1016/j.compbiomed.2007.04.003. Epub 2007 Jun 4.
6
Estimating the number of clusters in multivariate data by self-organizing maps.
Int J Neural Syst. 1999 Jun;9(3):195-202. doi: 10.1142/s0129065799000186.
7
New adaptive color quantization method based on self-organizing maps.
IEEE Trans Neural Netw. 2005 Jan;16(1):237-49. doi: 10.1109/TNN.2004.836543.
8
Visualizing the topical structure of the medical sciences: a self-organizing map approach.
PLoS One. 2013;8(3):e58779. doi: 10.1371/journal.pone.0058779. Epub 2013 Mar 12.
9
Geovisualization to support the exploration of large health and demographic survey data.
Int J Health Geogr. 2004 Jun 4;3(1):12. doi: 10.1186/1476-072X-3-12.
10
TreeSOM: Cluster analysis in the self-organizing map.
Neural Netw. 2006 Jul-Aug;19(6-7):935-49. doi: 10.1016/j.neunet.2006.05.003. Epub 2006 Jun 15.

引用本文的文献

1
Geospatial multivariate analysis of COVID-19: a global perspective.
GeoJournal. 2021 Oct 23:1-15. doi: 10.1007/s10708-021-10520-4.
4
Does neighborhood social and environmental context impact race/ethnic disparities in childhood asthma?
Health Place. 2017 Mar;44:86-93. doi: 10.1016/j.healthplace.2017.01.006. Epub 2017 Feb 20.
5
Utilizing Exploratory Spatial Data Analysis to Examine Health and Environmental Disparities in Disadvantaged Neighborhoods.
Environ Justice. 2013 Jun;6(3):81-87. doi: 10.1089/env.2013.0010. Epub 2013 Jun 14.
7
Bicomponent Trend Maps: A Multivariate Approach to Visualizing Geographic Time Series.
Cartogr Geogr Inf Sci. 2010 Jul 1;37(3):169-187. doi: 10.1559/152304010792194930.
8
Resolution Control for Balancing Overview + Detail in Spatial, Multivariate Analysis.
Cartogr J. 2008 Nov 1;45(4):261-273. doi: 10.1179/174327708x347764.
9
Supporting the Process of Exploring and Interpreting Space-Time Multivariate Patterns: The Visual Inquiry Toolkit.
Cartogr Geogr Inf Sci. 2008 Jan 1;35(1):33-50. doi: 10.1559/152304008783475689.
10
Distributed usability evaluation of the Pennsylvania Cancer Atlas.
Int J Health Geogr. 2008 Jul 11;7:36. doi: 10.1186/1476-072X-7-36.

本文引用的文献

1
Clustering of the self-organizing map.
IEEE Trans Neural Netw. 2000;11(3):586-600. doi: 10.1109/72.846731.
2
ViSOM - a novel method for multivariate data projection and structure visualization.
IEEE Trans Neural Netw. 2002;13(1):237-43. doi: 10.1109/72.977314.
3
Geovisualization to support the exploration of large health and demographic survey data.
Int J Health Geogr. 2004 Jun 4;3(1):12. doi: 10.1186/1476-072X-3-12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验