Suppr超能文献

社会空间自组织映射:利用社交媒体评估与社会过程接触相关的地理区域。

Socio-spatial Self-organizing Maps: Using Social Media to Assess Relevant Geographies for Exposure to Social Processes.

作者信息

Relia Kunal, Akbari Mohammad, Duncan Dustin, Chunara Rumi

机构信息

New York University, USA.

New York University School of Medicine, USA.

出版信息

Proc ACM Hum Comput Interact. 2018 Nov;2. doi: 10.1145/3274414.

Abstract

Social media offers a unique window into attitudes like racism and homophobia, exposure to which are important, hard to measure and understudied social determinants of health. However, individual geo-located observations from social media are noisy and geographically inconsistent. Existing areas by which exposures are measured, like Zip codes, average over irrelevant administratively-defined boundaries. Hence, in order to enable studies of online social environmental measures like attitudes on social media and their possible relationship to health outcomes, first there is a need for a method to define the collective, underlying degree of social media attitudes by region. To address this, we create the Socio-spatial-Self organizing map, "SS-SOM" pipeline to best identify regions by their latent social attitude from Twitter posts. SS-SOMs use neural embedding for text-classification, and augment traditional SOMs to generate a controlled number of nonoverlapping, topologically-constrained and topically-similar clusters. We find that not only are SS-SOMs robust to missing data, the exposure of a cohort of men who are susceptible to multiple racism and homophobia-linked health outcomes, changes by up to 42% using SS-SOM measures as compared to using Zip code-based measures.

摘要

社交媒体为洞察种族主义和恐同症等态度提供了一个独特的窗口,接触这些态度是重要的、难以衡量且研究不足的健康社会决定因素。然而,来自社交媒体的个体地理位置观测数据存在噪声且在地理上不一致。现有的测量接触情况的区域,如邮政编码,是在不相关的行政定义边界上进行平均。因此,为了能够研究诸如社交媒体上的态度等在线社会环境指标及其与健康结果的可能关系,首先需要一种方法来按区域定义社交媒体态度的集体潜在程度。为了解决这个问题,我们创建了社会空间自组织映射(“SS - SOM”)管道,以根据推特帖子中的潜在社会态度最佳地识别区域。SS - SOM 使用神经嵌入进行文本分类,并对传统的自组织映射进行扩充,以生成数量可控的、不重叠的、拓扑受限且主题相似的聚类。我们发现,SS - SOM 不仅对缺失数据具有鲁棒性,与使用基于邮政编码的测量方法相比,使用 SS - SOM 测量方法时,一组易受多种与种族主义和恐同症相关的健康结果影响的男性的接触情况变化高达 42%。

相似文献

6
The Forbidden Region Self-Organizing Map Neural Network.禁区自组织映射神经网络。
IEEE Trans Neural Netw Learn Syst. 2020 Jan;31(1):201-211. doi: 10.1109/TNNLS.2019.2900091. Epub 2019 Mar 18.
8
Self-organizing maps based on limit cycle attractors.基于极限环吸引子的自组织映射。
Neural Netw. 2015 Mar;63:208-22. doi: 10.1016/j.neunet.2014.12.003. Epub 2014 Dec 18.
10
Topology-based hierarchical clustering of self-organizing maps.基于拓扑结构的自组织映射分层聚类
IEEE Trans Neural Netw. 2011 Mar;22(3):474-85. doi: 10.1109/TNN.2011.2107527.

引用本文的文献

本文引用的文献

3
Assessing Behavioral Stages From Social Media Data.从社交媒体数据评估行为阶段。
CSCW Conf Comput Support Coop Work. 2017 Feb-Mar;2017:1320-1333. doi: 10.1145/2998181.2998336.
5
7
Black Lives Matter: A Commentary on Racism and Public Health.《黑人的命也是命:关于种族主义与公共卫生的评论》
Am J Public Health. 2015 Aug;105(8):e27-30. doi: 10.2105/AJPH.2015.302706. Epub 2015 Jun 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验