Suppr超能文献

利用近红外反射光谱技术预测旱地谷物品种的纤维和营养成分含量。

Using NIRS to predict fiber and nutrient content of dryland cereal cultivars.

机构信息

Crop and Soil Sciences Department, Washington State University, Pullman, Washington 99164-6420, USA.

出版信息

J Agric Food Chem. 2010 Jan 13;58(1):398-403. doi: 10.1021/jf9025844.

Abstract

Residue from cultivars of spring wheat (Triticum aestivum L.), winter wheat, and spring barley (Hordeum vulgare L.) was characterized for fiber and nutrient traits using reference methods and near-infrared spectroscopy (NIRS). Calibration models were developed for neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), carbon (C), sulfur (S), nitrogen (N), and C:N. When calibrations were tested against validation sets for each crop year, NIRS was an acceptable method for predicting NDF (standard error of prediction (SEP)<0.87; R2>0.90) and ADF (SEP< 0.81; R2>0.92) and moderately successful for ADL in 1 year of the study (SEP=0.44; R2=0.81) but less successful for C, S, N, and C:N (R2 all<0.57). These results indicate that NIRS can predict the NDF and ADF of cereal residue from dryland cropping systems and is a useful tool to estimate residue decomposition potential.

摘要

利用参考方法和近红外光谱(NIRS)对春小麦(Triticum aestivum L.)、冬小麦和春大麦(Hordeum vulgare L.)品种的残渣进行了纤维和营养特性分析。为中性洗涤剂纤维(NDF)、酸性洗涤剂纤维(ADF)、酸性洗涤剂木质素(ADL)、碳(C)、硫(S)、氮(N)和 C:N 开发了校准模型。当针对每个作物年份的验证集测试校准时,NIRS 是一种可接受的预测 NDF 的方法(预测标准误差(SEP)<0.87;R2>0.90)和 ADF(SEP<0.81;R2>0.92),在研究的 1 年中对 ADL 的预测效果也较为成功(SEP=0.44;R2=0.81),但对 C、S、N 和 C:N 的预测效果较差(R2 均<0.57)。这些结果表明,NIRS 可以预测旱地作物系统中谷物残渣的 NDF 和 ADF,是一种估计残渣分解潜力的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验