Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH, USA.
Anal Chem. 2010 Jan 1;82(1):353-8. doi: 10.1021/ac902041h.
Electroporation is one of the most popular nonviral gene transfer methods for embryonic stem cell transfection. Bulk electroporation techniques, however, require a high electrical field and provide a nonuniform electrical field distribution among randomly distributed cells, leading to limited transfection efficiency and cell viability, especially for a low number of cells. We present here a membrane sandwich electroporation system using a well-defined micronozzle array. This device is capable of transfecting hundred to millions of cells with good performance. The ability to treat a small number of cells (i.e., a hundred) offers great potential to work with hard-to-harvest patient cells for pharmaceutical kinetic studies. Numerical simulation of the initial transmembrane potential distribution and propidium iodide (PI) dye diffusion experiments demonstrated the advantage of highly focused and localized electric field strength provided by the micronozzle array over conventional bulk electroporation.
电穿孔是胚胎干细胞转染最常用的非病毒基因转移方法之一。然而,批量电穿孔技术需要高电场,并且在随机分布的细胞之间提供非均匀的电场分布,导致转染效率和细胞活力有限,尤其是对于少量细胞。我们在这里介绍了一种使用明确定义的微喷嘴阵列的膜三明治电穿孔系统。该装置能够以良好的性能转染数百到数百万个细胞。能够处理少量细胞(即数百个)的能力为进行药物动力学研究的难以收获的患者细胞提供了很大的工作潜力。初始跨膜电势分布的数值模拟和碘化丙啶(PI)染料扩散实验表明,微喷嘴阵列提供的高度集中和局部电场强度优于传统的批量电穿孔。