Suppr超能文献

用于将外源分子在时空控制下转染到贴壁细胞中的微系统。

Microsystem for transfection of exogenous molecules with spatio-temporal control into adherent cells.

作者信息

Jain Tilak, Muthuswamy Jit

机构信息

Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287-9709, USA.

出版信息

Biosens Bioelectron. 2007 Jan 15;22(6):863-70. doi: 10.1016/j.bios.2006.03.013. Epub 2006 Apr 25.

Abstract

Several non-viral techniques involving the use of liposomes, particle bombardment and electroporation have been used for efficient transfection of plasmids and other molecules into cells. Current approaches target whole or bulk regions of tissue, lacking the desired spatial control over the transfection process. In this study, we present a novel approach using microsystems to achieve spatial and temporal control over the transfection process in adherent cells. A 6x6 MEA (microelectrode array) with 100 microm microelectrode dimension was developed on a silicon substrate using standard microfabrication procedures and passivated with a biocompatible layer. Using finite element models, electric field intensities were simulated and locations of optimal electroporation zones in the cell culture on the microelectrode surface were predicted. The MEA was subsequently tested using 3T3 fibroblasts cultured on the MEA surface for 96 h and stimulation voltages in the range of 2-5 V in the presence of propidium iodide (PI), a cell impermeant dye. Maximum electric field intensities in the z-direction were estimated to be in the range of 320-820 V/cm for applied differential voltages in the range of 2-5 V. Cells directly on the top and on the edges of the stimulating microelectrodes in the MEA were preferentially transfected with PI as predicted by the simulations. The results of these experiments demonstrate that spatial and temporal control of desired regions of transfection in vitro can be achieved using MEAs and electroporation.

摘要

几种涉及使用脂质体、粒子轰击和电穿孔的非病毒技术已被用于将质粒和其他分子高效转染到细胞中。目前的方法针对的是整个组织区域或大部分组织区域,在转染过程中缺乏所需的空间控制。在本研究中,我们提出了一种使用微系统在贴壁细胞中转染过程实现空间和时间控制的新方法。使用标准微加工工艺在硅基板上制作了一种微电极尺寸为100微米的6×6微电极阵列(MEA),并用生物相容性层进行钝化处理。利用有限元模型模拟了电场强度,并预测了微电极表面细胞培养中最佳电穿孔区域的位置。随后,在MEA表面培养96小时的3T3成纤维细胞上对MEA进行测试,并在存在细胞不可渗透染料碘化丙啶(PI)的情况下施加2 - 5V范围内的刺激电压。对于2 - 5V范围内的施加差分电压,z方向上的最大电场强度估计在320 - 820V/cm范围内。如模拟所预测的,MEA中刺激微电极顶部和边缘上的细胞优先被PI转染。这些实验结果表明,使用MEA和电穿孔可以在体外实现对所需转染区域的空间和时间控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验