Medical College of Georgia, Augusta, GA 30912, USA.
Vascul Pharmacol. 2010 May-Jun;52(5-6):182-90. doi: 10.1016/j.vph.2009.11.010. Epub 2009 Dec 3.
Acute lung injury (ALI) is associated with severe alterations in lung structure and function and is characterized by hypoxemia, pulmonary edema, low lung compliance and widespread capillary leakage. Asymmetric dimethylarginine (ADMA), a known cardiovascular risk factor, has been linked to endothelial dysfunction and the pathogenesis of a number of cardiovascular diseases. However, the role of ADMA in the pathogenesis of ALI is less clear. ADMA is metabolized via hydrolytic degradation to l-citrulline and dimethylamine by the enzyme, dimethylarginine dimethylaminohydrolase (DDAH). Recent studies suggest that lipopolysaccharide (LPS) markedly increases the level of ADMA and decreases DDAH activity in endothelial cells. Thus, the purpose of this study was to determine if alterations in the ADMA/DDAH pathway contribute to the development of ALI initiated by LPS-exposure in mice. Our data demonstrate that LPS exposure significantly increases ADMA levels and this correlates with a decrease in DDAH activity but not protein levels of either DDAH I or DDAH II isoforms. Further, we found that the increase in ADMA levels cause an early decrease in nitric oxide (NO(x)) and a significant increase in both NO synthase (NOS)-derived superoxide and total nitrated lung proteins. Finally, we found that decreasing peroxynitrite levels with either uric acid or Manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTymPyp) significantly attenuated the lung leak associated with LPS-exposure in mice suggesting a key role for protein nitration in the progression of ALI. In conclusion, this is the first study that suggests a role of the ADMA/DDAH pathway during the development of ALI in mice and that ADMA may be a novel therapeutic biomarker to ascertain the risk for development of ALI.
急性肺损伤(ALI)与肺结构和功能的严重改变有关,其特征是低氧血症、肺水肿、肺顺应性降低和广泛的毛细血管渗漏。不对称二甲基精氨酸(ADMA)是一种已知的心血管危险因素,与内皮功能障碍和多种心血管疾病的发病机制有关。然而,ADMA 在 ALI 发病机制中的作用尚不清楚。ADMA 通过酶二甲基精氨酸二甲氨基水解酶(DDAH)的水解降解代谢为 l-瓜氨酸和二甲胺。最近的研究表明,脂多糖(LPS)显著增加内皮细胞中 ADMA 的水平并降低 DDAH 活性。因此,本研究旨在确定 ADMA/DDAH 途径的改变是否有助于 LPS 暴露诱导的小鼠 ALI 的发展。我们的数据表明,LPS 暴露显著增加 ADMA 水平,这与 DDAH 活性降低相关,但 DDAH I 或 DDAH II 同工型的蛋白水平没有降低。此外,我们发现 ADMA 水平的升高导致早期一氧化氮(NO(x))减少和一氧化氮合酶(NOS)衍生的超氧化物和总硝化肺蛋白的显著增加。最后,我们发现,用尿酸或锰(III)四(1-甲基-4-吡啶基)卟啉(MnTymPyp)降低过氧亚硝酸盐水平可显著减轻 LPS 暴露引起的小鼠肺漏,表明蛋白质硝化在 ALI 进展中起关键作用。总之,这是第一项表明 ADMA/DDAH 途径在小鼠 ALI 发展中起作用的研究,并且 ADMA 可能是一种新型治疗性生物标志物,以确定发展为 ALI 的风险。