Suppr超能文献

半监督最小二乘支持向量机

Semisupervised least squares support vector machine.

作者信息

Adankon Mathias M, Cheriet Mohamed, Biem Alain

机构信息

Synchromedia Laboratory for Multimedia Communication in Telepresence, Ecole de Technologie Supérieure, University of Quebec, Montreal, QC, Canada.

出版信息

IEEE Trans Neural Netw. 2009 Dec;20(12):1858-70. doi: 10.1109/TNN.2009.2031143.

Abstract

The least squares support vector machine (LS-SVM), like the SVM, is based on the margin-maximization performing structural risk and has excellent power of generalization. In this paper, we consider its use in semisupervised learning. We propose two algorithms to perform this task deduced from the transductive SVM idea. Algorithm 1 is based on combinatorial search guided by certain heuristics while Algorithm 2 iteratively builds the decision function by adding one unlabeled sample at the time. In term of complexity, Algorithm 1 is faster but Algorithm 2 yields a classifier with a better generalization capacity with only a few labeled data available. Our proposed algorithms are tested in several benchmarks and give encouraging results, confirming our approach.

摘要

最小二乘支持向量机(LS - SVM)与支持向量机(SVM)一样,基于执行结构风险的边际最大化,具有出色的泛化能力。在本文中,我们考虑将其用于半监督学习。我们提出了两种从转导支持向量机思想推导而来的算法来执行此任务。算法1基于由某些启发式方法引导的组合搜索,而算法2则通过一次添加一个未标记样本迭代地构建决策函数。在复杂度方面,算法1更快,但算法2在仅有少量标记数据可用的情况下能产生具有更好泛化能力的分类器。我们提出的算法在多个基准测试中进行了测试,并给出了令人鼓舞的结果,证实了我们的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验