Suppr超能文献

用于医学诊断决策支持的模糊朴素贝叶斯模型。

Fuzzy Naive Bayesian model for medical diagnostic decision support.

作者信息

Wagholikar Kavishwar B, Vijayraghavan Sundararajan, Deshpande Ashok W

机构信息

Interdisciplinary School of Scientific Computing, University of Pune, Pune-411007, India.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3409-12. doi: 10.1109/IEMBS.2009.5332468.

Abstract

This work relates to the development of computational algorithms to provide decision support to physicians. The authors propose a Fuzzy Naive Bayesian (FNB) model for medical diagnosis, which extends the Fuzzy Bayesian approach proposed by Okuda. A physician's interview based method is described to define a orthogonal fuzzy symptom information system, required to apply the model. For the purpose of elaboration and elicitation of characteristics, the algorithm is applied to a simple simulated dataset, and compared with conventional Naive Bayes (NB) approach. As a preliminary evaluation of FNB in real world scenario, the comparison is repeated on a real fuzzy dataset of 81 patients diagnosed with infectious diseases. The case study on simulated dataset elucidates that FNB can be optimal over NB for diagnosing patients with imprecise-fuzzy information, on account of the following characteristics - 1) it can model the information that, values of some attributes are semantically closer than values of other attributes, and 2) it offers a mechanism to temper exaggerations in patient information. Although the algorithm requires precise training data, its utility for fuzzy training data is argued for. This is supported by the case study on infectious disease dataset, which indicates optimality of FNB over NB for the infectious disease domain. Further case studies on large datasets are required to establish utility of FNB.

摘要

这项工作涉及开发计算算法以向医生提供决策支持。作者提出了一种用于医学诊断的模糊朴素贝叶斯(FNB)模型,该模型扩展了奥库达提出的模糊贝叶斯方法。描述了一种基于医生问诊的方法来定义应用该模型所需的正交模糊症状信息系统。为了详细阐述和引出特征,该算法被应用于一个简单的模拟数据集,并与传统朴素贝叶斯(NB)方法进行比较。作为对FNB在现实世界场景中的初步评估,在一个由81名被诊断患有传染病的患者组成的真实模糊数据集上重复了该比较。在模拟数据集上的案例研究表明,由于以下特征,FNB在诊断具有不精确 - 模糊信息的患者方面可能优于NB:1)它可以对某些属性的值在语义上比其他属性的值更接近的信息进行建模,以及2)它提供了一种缓和患者信息夸大的机制。尽管该算法需要精确的训练数据,但有人认为它对模糊训练数据也有用。传染病数据集的案例研究支持了这一点,该研究表明在传染病领域FNB优于NB。需要对大型数据集进行进一步的案例研究来确定FNB的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验