Li Cheng, Ding Guang-Hong, Wu Guo-Qiang, Poon Chi-Sang
Department of Mechanics and Engineering Science of Fudan University, Shanghai 200032, P. R. China.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3429-32. doi: 10.1109/IEMBS.2009.5332501.
A wide variety of methods based on fractal, entropic or chaotic approaches have been applied to the analysis of complex physiological time series. In this paper, we show that fractal and entropy measures are poor indicators of nonlinearity for gait data and heart rate variability data. In contrast, the noise titration method based on Volterra autoregressive modeling represents the most reliable currently available method for testing nonlinear determinism and chaotic dynamics in the presence of measurement noise and dynamic noise.
基于分形、熵或混沌方法的各种各样的方法已被应用于复杂生理时间序列的分析。在本文中,我们表明,对于步态数据和心率变异性数据,分形和熵测度是非线性的不良指标。相比之下,基于沃尔泰拉自回归建模的噪声滴定法是目前在存在测量噪声和动态噪声的情况下测试非线性确定性和混沌动力学最可靠的方法。