Suppr超能文献

复杂生理时间序列分析的分形、熵和混沌方法:批判性评估。

Fractal, entropic and chaotic approaches to complex physiological time series analysis: a critical appraisal.

作者信息

Li Cheng, Ding Guang-Hong, Wu Guo-Qiang, Poon Chi-Sang

机构信息

Department of Mechanics and Engineering Science of Fudan University, Shanghai 200032, P. R. China.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3429-32. doi: 10.1109/IEMBS.2009.5332501.

Abstract

A wide variety of methods based on fractal, entropic or chaotic approaches have been applied to the analysis of complex physiological time series. In this paper, we show that fractal and entropy measures are poor indicators of nonlinearity for gait data and heart rate variability data. In contrast, the noise titration method based on Volterra autoregressive modeling represents the most reliable currently available method for testing nonlinear determinism and chaotic dynamics in the presence of measurement noise and dynamic noise.

摘要

基于分形、熵或混沌方法的各种各样的方法已被应用于复杂生理时间序列的分析。在本文中,我们表明,对于步态数据和心率变异性数据,分形和熵测度是非线性的不良指标。相比之下,基于沃尔泰拉自回归建模的噪声滴定法是目前在存在测量噪声和动态噪声的情况下测试非线性确定性和混沌动力学最可靠的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验