Suppr超能文献

神经母细胞瘤的计算机辅助预后分析:数字化组织学图像中有丝分裂和核溶解细胞的检测

Computer-aided prognosis of neuroblastoma: detection of mitosis and karyorrhexis cells in digitized histological images.

作者信息

Sertel Olcay, Catalyurek Umit V, Shimada Hiroyuki, Gurcan Metin N

机构信息

Department of Electrical and Computer Engineering and the Department of Biomedical Informatics, The Ohio State Univ., Columbus, OH 43210, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1433-6. doi: 10.1109/IEMBS.2009.5332910.

Abstract

Histopathological examination is one of the most important steps in evaluating prognosis of patients with neuroblastoma (NB). NB is a pediatric tumor of sympathetic nervous system and current evaluation of NB tumor histology is done according to the International Neuroblastoma Pathology Classification. The number of cells undergoing either mitosis or karyorrhexis (MK) plays an important role in this classification system. However, manual counting of such cells is tedious and subject to considerable inter- and intra-reader variations. A computer-assisted system may allow more precise results leading to more accurate prognosis in clinical practice. In this study, we propose an image analysis approach that operates on digitized NB histology samples. Based on the likelihood functions estimated from the samples of manually marked regions, we compute the probability map that indicates how likely a pixel belongs to an MK cell. Component-wise 2-step thresholding of the generated probability map provides promising results in detecting MK cells with an average sensitivity of 81.1% and 12.2 false positive detections on average.

摘要

组织病理学检查是评估神经母细胞瘤(NB)患者预后的最重要步骤之一。NB是一种起源于交感神经系统的儿科肿瘤,目前对NB肿瘤组织学的评估是根据国际神经母细胞瘤病理分类进行的。处于有丝分裂或核溶解(MK)状态的细胞数量在该分类系统中起着重要作用。然而,手动计数这些细胞既繁琐又容易在不同读者之间以及同一读者内部产生相当大的差异。计算机辅助系统可能会得出更精确的结果,从而在临床实践中实现更准确的预后评估。在本研究中,我们提出了一种对数字化NB组织学样本进行操作的图像分析方法。基于从手动标记区域样本估计的似然函数,我们计算出概率图,该图表明一个像素属于MK细胞的可能性。对生成的概率图进行逐分量的两步阈值处理,在检测MK细胞方面取得了有前景的结果,平均灵敏度为81.1%,平均假阳性检测为12.2次。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验