Suppr超能文献

使用波形图和可变速率粒子滤波器精确估计微管动力学。

Accurate estimation of microtubule dynamics using kymographs and variable-rate particle filters.

作者信息

Smal Ihor, Grigoriev Ilya, Akhmanova Anna, Niessen Wiro J, Meijering Erik

机构信息

Department of Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1012-5. doi: 10.1109/IEMBS.2009.5333350.

Abstract

Studying intracellular dynamics is of major importance for understanding healthy life at the molecular level and for developing drugs to target disease processes. One of the key technologies to enable this research is the automated tracking and motion analysis of subcellular objects in microscopy image sequences. Contrary to common frame-by-frame tracking methods, two alternative approaches have been proposed recently, based on either Bayesian estimation or space-time segmentation, which better exploit the available spatiotemporal information. In this paper, we propose to combine the power of both approaches, and develop a new probabilistic method to segment the traces of the moving objects in kymograph representations of the image data. It is based on variable-rate particle filtering and uses multiscale trend analysis for estimation of the relevant kinematic parameters using the extracted traces. Experiments on realistic synthetically generated images as well as on real biological image data demonstrate the improved potential of the new method for the analysis of microtubule dynamics in vitro.

摘要

研究细胞内动力学对于在分子水平上理解健康生命以及开发针对疾病过程的药物至关重要。实现这项研究的关键技术之一是对显微镜图像序列中的亚细胞物体进行自动跟踪和运动分析。与常见的逐帧跟踪方法不同,最近提出了两种替代方法,分别基于贝叶斯估计或时空分割,它们能更好地利用可用的时空信息。在本文中,我们建议结合这两种方法的优势,开发一种新的概率方法来分割图像数据的波形图表示中移动物体的轨迹。它基于可变速率粒子滤波,并使用多尺度趋势分析,通过提取的轨迹来估计相关的运动学参数。在逼真的合成生成图像以及真实生物图像数据上进行的实验证明了该新方法在体外微管动力学分析方面的改进潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验