Namani Ravi, Bayly Philip V
Washington University, Mechanical, Aerospace, and Structural Engineering, Box 1185, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1117-22. doi: 10.1109/IEMBS.2009.5333418.
The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel.
磁共振弹性成像(MRE)可使软组织中剪切波的传播可视化,以表征组织的力学特性。剪切波传播引起的脑组织动态变形可能是爆炸所致创伤性脑损伤病理的基础。由于平行纤维的排列,大脑中的白质与其他生物材料一样,呈现出横向各向同性结构。需要合适的数学模型和特征明确的实验系统来理解这些结构中的波传播。在本文中,我们回顾了各向异性软材料中波的理论,包括叠加在非线性超弹性材料有限变形上的小振幅波。该理论的一些预测在具有可控各向异性的软材料——磁排列纤维蛋白凝胶的实验研究中得到了证实。