Suppr超能文献

闭环脑机接口(BCI)任务期间硬膜外皮层脑电图(EECoG)信号的神经适应性

Neural adaptation of epidural electrocorticographic (EECoG) signals during closed-loop brain computer interface (BCI) tasks.

作者信息

Rouse Adam G, Moran Daniel W

机构信息

Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5514-7. doi: 10.1109/IEMBS.2009.5333180.

Abstract

Invasive BCI studies have classically relied on actual or imagined movements to train their neural decoding algorithms. In this study, non-human primates were required to perform a 2D BCI task using epidural microECoG recordings. The decoding weights and cortical locations of the electrodes used for control were randomly chosen and fixed for a series of daily recording sessions for five days. Over a period of one week, the subjects learned to accurately control a 2D computer cursor through neural adaptation of microECoG signals over "cortical control columns" having diameters on a the order of a few mm. These results suggest that the spatial resolution of microECoG recordings can be increased via neural plasticity.

摘要

侵入性脑机接口(BCI)研究传统上依赖实际运动或想象运动来训练其神经解码算法。在本研究中,要求非人类灵长类动物使用硬膜外微脑电图(microECoG)记录来执行二维BCI任务。用于控制的电极的解码权重和皮质位置是随机选择的,并在为期五天的一系列每日记录时段中固定下来。在一周的时间里,受试者通过对直径在几毫米量级的“皮质控制柱”上的微脑电图信号进行神经适应,学会了精确控制二维计算机光标。这些结果表明,微脑电图记录的空间分辨率可以通过神经可塑性提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验