Suppr超能文献

合成生物学的多尺度模型。

Multiscale models for synthetic biology.

作者信息

Kaznessis Yiannis N

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55112, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6408-11. doi: 10.1109/IEMBS.2009.5333516.

Abstract

Reacting systems away from the thermodynamic limit cannot be accurately modeled with ordinary differential equations. These continuous-deterministic modeling formalisms, traditionally developed and used by chemical engineers can be distinctly false if the number of molecules of reacting chemical species is very small, or if reaction events are very rare. Then stochastic-discrete representations are appropriate. Importantly, in cases where in a network of reactions there are some parts that must be modeled discretely and stochastically, yet others can be modeled continuously and deterministically, the need for development of multiscale models emerges naturally. In computational synthetic biology, such cases arise often. In this work we present the development of multiscale models for synthetic biology applications, demonstrating accuracy, computational efficiency and utility.

摘要

远离热力学极限的反应系统无法用常微分方程进行精确建模。这些传统上由化学工程师开发和使用的连续确定性建模形式,如果反应化学物种的分子数量非常少,或者反应事件非常罕见,可能会明显错误。此时随机离散表示法就适用了。重要的是,在一个反应网络中,有些部分必须用离散和随机的方式建模,而其他部分可以用连续和确定性的方式建模,那么自然就出现了开发多尺度模型的需求。在计算合成生物学中,这种情况经常出现。在这项工作中,我们展示了用于合成生物学应用的多尺度模型的开发,证明了其准确性、计算效率和实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验