Mascaro Angelica A, Mello Carlos A B, Santos Wellington P, Cavalcanti George D C
Center of Informatics, Federal University of Pernambuco, Recife, Brazil.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3653-6. doi: 10.1109/IEMBS.2009.5333696.
Tissue classification in mammography can help the diagnosis of breast cancer by separating healthy tissue from lesions. We present herein the use of three texture descriptors for breast tissue segmentation purposes: the Sum Histogram, the Gray Level Co-Occurrence Matrix (GLCM) and the Local Binary Pattern (LBP). A modification of the LBP is also proposed for a better distinction of the tissues. In order to segment the image into its tissues, these descriptors are compared using a fidelity index and two clustering algorithms: k-Means and SOM (Self-Organizing Maps).
乳腺钼靶成像中的组织分类可通过将健康组织与病变组织分离来辅助乳腺癌的诊断。我们在此介绍三种用于乳腺组织分割的纹理描述符:和直方图、灰度共生矩阵(GLCM)以及局部二值模式(LBP)。还提出了LBP的一种改进形式,以更好地区分组织。为了将图像分割成不同组织,使用保真度指数以及两种聚类算法:k均值算法和自组织映射(SOM)对这些描述符进行比较。