Suppr超能文献

迈向用于言语治疗中舌运动三维跟踪的磁定位系统。

Towards a magnetic localization system for 3-D tracking of tongue movements in speech-language therapy.

作者信息

Cheng Chihwen, Huo Xueliang, Ghovanloo Maysam

机构信息

GT-Bionics Lab School of Electrical and Computer Engineering at Georgia Institute of Technology, Atlanta, GA, 30308, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:563-6. doi: 10.1109/IEMBS.2009.5334058.

Abstract

This paper presents a new magnetic localization system based on a compact triangular sensor setup and three different optimization algorithms, intended for tracking tongue motion in the 3-D oral space. A small permanent magnet, secured on the tongue by tissue adhesives, will be used as a tracer. The magnetic field variations due to tongue motion are detected by a 3-D magneto-inductive sensor array outside the mouth and wirelessly transmitted to a computer. The position and rotation angles of the tracer are reconstructed based on sensor outputs and magnetic dipole equation using DIRECT, Powell, and Nelder-Mead optimization algorithms. Localization accuracy and processing time of the three algorithms are compared using one data set collected in which source-sensor distance was changed from 40 to 150 mm. Powell algorithm showed the best performance with 0.92 mm accuracy in position and 0.7(o) in orientation. The average processing time was 43.9 ms/sample, which can satisfy real time tracking up to approximately 20 Hz.

摘要

本文提出了一种基于紧凑三角形传感器设置和三种不同优化算法的新型磁定位系统,旨在跟踪三维口腔空间中的舌头运动。通过组织粘合剂固定在舌头上的小型永磁体将用作示踪剂。口腔外部的三维磁感应传感器阵列检测由于舌头运动引起的磁场变化,并将其无线传输到计算机。使用DIRECT、Powell和Nelder-Mead优化算法,基于传感器输出和磁偶极方程重建示踪剂的位置和旋转角度。使用收集的一个数据集比较三种算法的定位精度和处理时间,其中源传感器距离从40毫米变化到150毫米。Powell算法表现最佳,位置精度为0.92毫米,方向精度为0.7°。平均处理时间为43.9毫秒/样本,这可以满足高达约20赫兹的实时跟踪。

相似文献

1
Towards a magnetic localization system for 3-D tracking of tongue movements in speech-language therapy.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:563-6. doi: 10.1109/IEMBS.2009.5334058.
2
A quadratic particle swarm optimization method for magnetic tracking of tongue motion in speech disorders.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4222-5. doi: 10.1109/IEMBS.2008.4650141.
3
A wireless tongue-computer interface using stereo differential magnetic field measurement.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5724-7. doi: 10.1109/IEMBS.2007.4353646.
4
Fully integrated wireless inductive tongue computer interface for disabled people.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:547-50. doi: 10.1109/IEMBS.2009.5333192.
5
A magneto-inductive sensor based wireless tongue-computer interface.
IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):497-504. doi: 10.1109/TNSRE.2008.2003375.
6
An arch-shaped intraoral tongue drive system with built-in tongue-computer interfacing SoC.
Sensors (Basel). 2014 Nov 14;14(11):21565-87. doi: 10.3390/s141121565.
7
A framework for mouse and keyboard emulation in a tongue control system.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:815-8. doi: 10.1109/IEMBS.2009.5334055.
8
Evaluation of the tongue drive system by individuals with high-level spinal cord injury.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:555-8. doi: 10.1109/IEMBS.2009.5334555.
10
Clinical evaluation of wireless inductive tongue computer interface for control of computers and assistive devices.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3365-8. doi: 10.1109/IEMBS.2010.5627924.

引用本文的文献

1
Pilot Study: Magnetic Motion Analysis for Swallowing Detection Using MEMS Cantilever Actuators.
Sensors (Basel). 2023 Mar 30;23(7):3594. doi: 10.3390/s23073594.
3
Joint Magnetic Calibration and Localization Based on Expectation Maximization for Tongue Tracking.
IEEE Trans Biomed Eng. 2018 Jan;65(1):52-63. doi: 10.1109/TBME.2017.2688919. Epub 2017 Apr 12.
4
Multimodal Speech Capture System for Speech Rehabilitation and Learning.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2639-2649. doi: 10.1109/TBME.2017.2654361. Epub 2017 Jan 18.
5
Geometrical Design of a Scalable Overlapping Planar Spiral Coil Array to Generate a Homogeneous Magnetic Field.
IEEE Trans Magn. 2012 Dec 21;49(6):2933-2945. doi: 10.1109/TMAG.2012.2235181.
6
EnerCage: a smart experimental arena with scalable architecture for behavioral experiments.
IEEE Trans Biomed Eng. 2014 Jan;61(1):139-48. doi: 10.1109/TBME.2013.2278180. Epub 2013 Aug 15.
7
Towards a smart experimental arena for long-term electrophysiology experiments.
IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):414-23. doi: 10.1109/TBCAS.2012.2211872.
8
A comprehensive method for magnetic sensor calibration: a precise system for 3-D tracking of the tongue movements.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1153-1156. doi: 10.1109/EMBC.2012.6346140.

本文引用的文献

1
A quadratic particle swarm optimization method for magnetic tracking of tongue motion in speech disorders.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4222-5. doi: 10.1109/IEMBS.2008.4650141.
2
A magneto-inductive sensor based wireless tongue-computer interface.
IEEE Trans Neural Syst Rehabil Eng. 2008 Oct;16(5):497-504. doi: 10.1109/TNSRE.2008.2003375.
3
A localization method using 3-axis magnetoresistive sensors for tracking of capsule endoscope.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2522-5. doi: 10.1109/IEMBS.2006.260711.
4
A novel method for real-time magnetic marker monitoring in the gastrointestinal tract.
Phys Med Biol. 2000 Oct;45(10):3081-93. doi: 10.1088/0031-9155/45/10/322.
5
Ultrasonographic measurement of tongue movement during swallowing.
J Ultrasound Med. 2000 Jan;19(1):15-20. doi: 10.7863/jum.2000.19.1.15.
6
Soft tissue anatomy of the tongue and floor of the mouth: an ultrasound demonstration.
Brain Lang. 1984 Mar;21(2):335-50. doi: 10.1016/0093-934x(84)90056-7.
8
Cineradiographic assessment of articulatory mobility in the dysarthrias.
J Speech Hear Disord. 1975 Nov;40(4):467-80. doi: 10.1044/jshd.4004.467.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验