Sweeney James D
U.A. Whitaker School of Engineering, Florida Gulf Coast University, FL 33965-6565, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3188-90. doi: 10.1109/IEMBS.2009.5334537.
In this study important aspects of the TASER(R) M26 and X26 neuromuscular incapacitation device waveforms are simulated, analyzed and contrasted against electrical stimulation with rectangular waveforms (commonly used in therapeutic stimulation devices). Expected skeletal muscle forces evoked by M26 and X26 stimulation are simulated also and compared against forces expected with higher or lower frequency trains. The first half-cycle of the M26 damped 50 kHz sinusoidal wave is the main contributor to stimulation threshold with this device. The pseudo-monophasic component of the X26 waveform primarily determines threshold for this system, with the leading damped 100 kHz component contributing little in this regard. Simulated isometric forces evoked at 19 Hz with either device are moderately intense (about 46% of maximal). Lower frequencies would likely not provide sufficient levels of contraction to override volitional motor control.
在本研究中,对泰瑟(TASER)M26和X26神经肌肉失能装置波形的重要方面进行了模拟、分析,并与矩形波形(常用于治疗性刺激装置)的电刺激进行了对比。还模拟了M26和X26刺激诱发的预期骨骼肌力量,并与更高或更低频率序列预期产生的力量进行了比较。M26的50 kHz阻尼正弦波的前半个周期是该装置刺激阈值的主要贡献因素。X26波形的伪单相成分主要决定了该系统的阈值,在这方面,领先的100 kHz阻尼成分贡献很小。使用这两种装置在19 Hz诱发的模拟等长力量强度适中(约为最大值的46%)。较低频率可能无法提供足够的收缩水平来克服自主运动控制。