Suppr超能文献

基于自适应内模的不确定异构干扰下电耦合神经元的鲁棒完全同步

Robust complete synchronization of electrical coupling neurons under uncertain heterogeneous disturbances using adaptive internal model.

作者信息

Wei Xile, Wang Jiang, Che Yanqiu, Deng Bin, Dong Feng

机构信息

School of Electrical Engineering & Automation, Tianjin University, Tianjin, CO 300072, China.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3457-60. doi: 10.1109/IEMBS.2009.5334599.

Abstract

An adaptive internal model control strategy is introduced into the robust complete synchronization of two gap-junction coupled FizHugh-Nagumo (FHN) neurons under uncertain heterogeneous disturbances which satisfies some general immersion condition. The synchronization problem can be converted into a robust stabilization problem of an augmented system consisting of the original given plants and an internal model. An adaptive law is employed against uncertain disturbances to make the estimate of internal model to converge to the ideal one. Following a proper state-feedback stabilizer is designed to guarantee the asymptotic stability of the resulting closed-loop system achieved for some appointed initial condition in the state space and for all possible values of the uncertain parameter vector. Finally, the simulation results demonstrate the validity of the proposed method.

摘要

将一种自适应内模控制策略引入到两个在不确定非均匀扰动下满足某些一般浸入条件的间隙连接耦合FizHugh-Nagumo(FHN)神经元的鲁棒完全同步中。同步问题可以转化为一个由原始给定对象和一个内模组成的增广系统的鲁棒镇定问题。采用自适应律来对抗不确定扰动,以使内模的估计收敛到理想估计。随后设计一个合适的状态反馈镇定器,以保证对于状态空间中的某些指定初始条件和不确定参数向量的所有可能值,所得到的闭环系统渐近稳定。最后,仿真结果证明了所提方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验