Wei Xile, Wang Jiang, Che Yanqiu, Deng Bin, Dong Feng
School of Electrical Engineering & Automation, Tianjin University, Tianjin, CO 300072, China.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3457-60. doi: 10.1109/IEMBS.2009.5334599.
An adaptive internal model control strategy is introduced into the robust complete synchronization of two gap-junction coupled FizHugh-Nagumo (FHN) neurons under uncertain heterogeneous disturbances which satisfies some general immersion condition. The synchronization problem can be converted into a robust stabilization problem of an augmented system consisting of the original given plants and an internal model. An adaptive law is employed against uncertain disturbances to make the estimate of internal model to converge to the ideal one. Following a proper state-feedback stabilizer is designed to guarantee the asymptotic stability of the resulting closed-loop system achieved for some appointed initial condition in the state space and for all possible values of the uncertain parameter vector. Finally, the simulation results demonstrate the validity of the proposed method.
将一种自适应内模控制策略引入到两个在不确定非均匀扰动下满足某些一般浸入条件的间隙连接耦合FizHugh-Nagumo(FHN)神经元的鲁棒完全同步中。同步问题可以转化为一个由原始给定对象和一个内模组成的增广系统的鲁棒镇定问题。采用自适应律来对抗不确定扰动,以使内模的估计收敛到理想估计。随后设计一个合适的状态反馈镇定器,以保证对于状态空间中的某些指定初始条件和不确定参数向量的所有可能值,所得到的闭环系统渐近稳定。最后,仿真结果证明了所提方法的有效性。