Suppr超能文献

使用对称多处理(SMP)的心脏电生理数值模型。

Cardiac electrophysiology numerical models using symmetric multiprocessing (SMP).

作者信息

Petsios Stefanos Konstantinos D, Fotiadis Dimitrios I

机构信息

Department of Computer Science, University of Ioannina, GR 45110 Ioannina, Greece.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5897-900. doi: 10.1109/IEMBS.2009.5334823.

Abstract

Multi-dimensional electrophysiological models have been introduced to investigate electrical propagation in tissue level, based on cell-dynamics models. The models include a set of non-linear differential equations which describe the dynamics of cell and tissue excitation. However, as models evolve, it is inevitable that proper and powerful tools need to be introduced in order to reproduce the detailed and thus computationally intensive simulations. To build such tools, several computational methodologies need to be adopted regarding efficiency and reliability. On the other hand improvements apply to the hardware too. State of the art computers, even personal computers, tend to make use of multiple core Central Processing Units. Unfortunately the aforementioned methodologies follow sequential logic, resulting to low efficiency of the working platform. In this work we present the performance bottleneck in symmetric multiprocessing (SMP) for simulations of propagation phenomena in cardiac tissue electrophysiological models. We demonstrate the scalability and efficacy of the different methodologies used in the discretisation scheme and message passing in SMP.

摘要

基于细胞动力学模型,多维电生理模型已被引入以研究组织层面的电传播。这些模型包括一组描述细胞和组织兴奋动力学的非线性微分方程。然而,随着模型的发展,为了重现详细且计算密集的模拟,不可避免地需要引入合适且强大的工具。为构建此类工具,需要在效率和可靠性方面采用几种计算方法。另一方面,硬件也需要改进。最先进的计算机,甚至个人计算机,都倾向于使用多核中央处理器。不幸的是,上述方法遵循顺序逻辑,导致工作平台效率低下。在这项工作中,我们展示了对称多处理(SMP)在心脏组织电生理模型传播现象模拟中的性能瓶颈。我们展示了在SMP中离散化方案和消息传递中使用的不同方法的可扩展性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验