Salger Tobias, Kling Sebastian, Hecking Tim, Geckeler Carsten, Morales-Molina Luis, Weitz Martin
Institut für Angewandte Physik, Wegelerstrasse 8, 53115 Bonn, Germany.
Science. 2009 Nov 27;326(5957):1241-3. doi: 10.1126/science.1179546.
Classical ratchet potentials, which alternate a driving potential with periodic random dissipative motion, can account for the operation of biological motors. We demonstrate the operation of a quantum ratchet, which differs from classical ratchets in that dissipative processes are absent within the observation time of the system (Hamiltonian regime). An atomic rubidium Bose-Einstein condensate is exposed to a sawtooth-like optical lattice potential, whose amplitude is periodically modulated in time. The ratchet transport arises from broken spatiotemporal symmetries of the driven potential, resulting in a desymmetrization of transporting eigenstates (Floquet states). The full quantum character of the ratchet transport was demonstrated by the measured atomic current oscillating around a nonzero stationary value at longer observation times, resonances occurring at positions determined by the photon recoil, and dependence of the transport current on the initial phase of the driving potential.
经典棘轮势通过周期性随机耗散运动与驱动势交替出现,可解释生物马达的运行机制。我们展示了一种量子棘轮的运行情况,它与经典棘轮的不同之处在于,在系统的观测时间内不存在耗散过程(哈密顿体系)。将一个铷原子玻色 - 爱因斯坦凝聚体置于一个锯齿状光学晶格势中,该势的振幅随时间进行周期性调制。棘轮输运源于驱动势的时空对称性破缺,导致输运本征态(弗洛凯态)的不对称化。通过测量在较长观测时间内围绕非零稳态值振荡的原子电流、在由光子反冲确定的位置出现的共振以及输运电流对驱动势初始相位的依赖性,证明了棘轮输运的完全量子特性。