Matthias Sven, Müller Frank
Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany.
Nature. 2003 Jul 3;424(6944):53-7. doi: 10.1038/nature01736.
The brownian motion of mesoscopic particles is ubiquitous and usually random. But in systems with periodic asymmetric barriers to movement, directed or 'rectified' motion can arise and may even modulate some biological processes. In man-made devices, brownian ratchets and variants based on optical or quantum effects have been exploited to induce directed motion, and the dependence of the amplitude of motion on particle size has led to the size-dependent separation of biomolecules. Here we demonstrate that the one-dimensional pores of a macroporous silicon membrane, etched to exhibit a periodic asymmetric variation in pore diameter, can act as massively parallel and multiply stacked brownian ratchets that are potentially suitable for large-scale particle separations. We show that applying a periodic pressure profile with a mean value of zero to a basin separated by such a membrane induces a periodic flow of water and suspended particles through the pores, resulting in a net motion of the particles from one side of the membrane to the other without moving the liquid itself. We find that the experimentally observed pressure dependence of the particle transport, including an inversion of the transport direction, agrees with calculations of the transport properties in the type of ratchet devices used here.
介观粒子的布朗运动无处不在,通常是随机的。但在具有周期性不对称运动障碍的系统中,可能会出现定向或“整流”运动,甚至可能调节一些生物过程。在人造装置中,基于光学或量子效应的布朗棘轮及其变体已被用于诱导定向运动,并且运动幅度对粒子大小的依赖性导致了生物分子的尺寸依赖性分离。在这里,我们证明了通过蚀刻制成的大孔硅膜的一维孔,其孔径呈现周期性不对称变化,可以作为大规模并行且多层堆叠的布朗棘轮,有可能适用于大规模粒子分离。我们表明,对由这种膜分隔的一个水盆施加平均值为零的周期性压力分布,会诱导水和悬浮粒子通过这些孔产生周期性流动,从而导致粒子从膜的一侧向另一侧发生净运动,而液体本身并不移动。我们发现,实验观察到的粒子传输对压力的依赖性,包括传输方向的反转,与这里使用的棘轮装置类型中传输特性的计算结果相符。