Suppr超能文献

糖尿病BioBreed大鼠中的蔗糖酶-α-淀粉酶:亚基结构的可逆性改变

Sucrase-alpha-dextrinase in diabetic BioBreed rats: reversible alteration of subunit structure.

作者信息

Najjar S M, Hampp L T, Rabkin R, Gray G M

机构信息

Department of Medicine, Stanford University School of Medicine, California 94305.

出版信息

Am J Physiol. 1991 Feb;260(2 Pt 1):G275-83. doi: 10.1152/ajpgi.1991.260.2.G275.

Abstract

BioBreed (BB) Wistar rats develop diabetes mellitus, which closely resembles the human disease, in 50% of progeny. Intestinal sucrase-alpha-dextrinase, a glycoprotein hydrolase of the enterocyte's brush border consisting of 140-kDa alpha-dextrinase and 125-kDa sucrase subunits, is essential for surface digestion of carbohydrate nutrients. Although its catalytic characteristics were found to be maintained in the diabetic state, the structure of the subunits, as compared with normal Wistar rats, was altered in the BB rat within 2 days of the onset of diabetes. Its capacity to react in a solid-phase immunoassay was reduced by 50%; when examined by 6% acrylamide electrophoresis, the sucrase subunit was increased in mass by 5 kDa and, in some BB rats, the dextrinase subunit was reduced by 5 kDa. Intact rats labeled intraintestinally with [35S]methionine displayed the alteration within 6 h of synthesis, indicating that nonenzymatic glycosylation could not account for the structural change. This mass change was not seen in streptozotocin-induced diabetes and was independent of the plasma glucose concentration or the degree of acidosis. Deglycosylation with peptide N-glycosidase indicated that the N-linked chains of the normal dextrinase subunit (11 kDa) have twice the mass of those in the BB rat (6 kDa) and that the sucrase subunit may have an increased mass of O-linked chains. Overall, these experiments point to changes in glycosylation as a mechanism of structural alteration in congenital diabetes. Despite persistence of the insulin-dependent diabetes, the subunit pattern eventually became indistinguishable from normal, but at differential rates (21 days and 35 days, respectively, for sucrase and dextrinase subunits).

摘要

BioBreed(BB)Wistar大鼠会患糖尿病,50%的后代会出现与人类疾病极为相似的症状。肠蔗糖酶-α-糊精酶是一种位于肠上皮细胞刷状缘的糖蛋白水解酶,由140 kDa的α-糊精酶和125 kDa的蔗糖酶亚基组成,对碳水化合物营养物质的表面消化至关重要。尽管发现其催化特性在糖尿病状态下得以维持,但与正常Wistar大鼠相比,糖尿病发病2天内,BB大鼠亚基的结构发生了改变。其在固相免疫测定中的反应能力降低了50%;通过6%丙烯酰胺电泳检测,蔗糖酶亚基的质量增加了5 kDa,在一些BB大鼠中,糊精酶亚基的质量减少了5 kDa。用[35S]甲硫氨酸进行肠内标记的完整大鼠在合成后6小时内就出现了这种改变,这表明非酶糖基化无法解释这种结构变化。这种质量变化在链脲佐菌素诱导的糖尿病中未出现,且与血糖浓度或酸中毒程度无关。用肽N-糖苷酶进行去糖基化表明,正常糊精酶亚基(11 kDa)的N-连接链质量是BB大鼠(6 kDa)的两倍,蔗糖酶亚基的O-连接链质量可能增加。总体而言,这些实验表明糖基化变化是先天性糖尿病结构改变的一种机制。尽管胰岛素依赖型糖尿病持续存在,但亚基模式最终变得与正常无异,但速率不同(蔗糖酶和糊精酶亚基分别为21天和35天)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验