Suppr超能文献

Cytokine signaling in lung: transforming growth factor-beta secretion by lung fibroblasts.

作者信息

Kelley J, Fabisiak J P, Hawes K, Absher M

机构信息

Department of Medicine, University of Vermont College of Medicine, Burlington 05405.

出版信息

Am J Physiol. 1991 Feb;260(2 Pt 1):L123-8. doi: 10.1152/ajplung.1991.260.2.L123.

Abstract

Control of growth and phenotypic expression of interstitial fibroblasts is a critical determinant of lung architecture and physiology during processes of growth and remodeling. We examined the ability of lung fibroblasts to produce transforming growth factor-beta (TGF-beta), a cytokine that is known to modulate proliferation and phenotypic expression of mesenchymal cells. Cultures of fibroblasts isolated from rat lungs spontaneously secrete TGF-beta as measured in the standard bioassay of anchorage-independent growth of normal rat kidney (NRK) cells in soft agar. Rat lung fibroblasts secrete TGF-beta in an inactive precursor form. Fibroblasts cultured from adult and fetal rat lungs produced comparable amounts of TGF-beta. The ability of lung fibroblast supernatant fluids to induce colony formation in soft agar could be completely neutralized by preincubation of samples with anti-TGF-beta immunoglobulin (Ig). Anti-platelet-derived growth factor IgG had no effect on anchorage-independent growth of NRK cells driven by rat fibroblast culture supernatant samples. These results indicate that TGF-beta does not require the presence of and interaction with secondary cytokines for its activity. In contrast to the results obtained with rat cells, neither human fetal nor adult lung fibroblasts secreted detectable amount of active TGF-beta or its inactive precursor. This was not due to the presence of TGF-beta inhibitors in fibroblast culture media, because the addition of purified porcine TGF-beta to conditioned medium from human lung fibroblast cultures yielded the expected increase in NRK cell growth in soft agar. These results point to differing cytokine control patterns in the lungs of the two species.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验