Suppr超能文献

时间序列建模中时滞分析和冗余分析的统计性能和信息量。

Statistical performance and information content of time lag analysis and redundancy analysis in time series modeling.

机构信息

Institute of Environmental Sciences (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, E-45071 Toledo, Spain.

出版信息

Ecology. 2009 Nov;90(11):3245-57. doi: 10.1890/07-0391.1.

Abstract

Time lag analysis (TLA) is a distance-based approach used to study temporal dynamics of ecological communities by measuring community dissimilarity over increasing time lags. Despite its increased use in recent years, its performance in comparison with other more direct methods (i.e., canonical ordination) has not been evaluated. This study fills this gap using extensive simulations and real data sets from experimental temporary ponds (true zooplankton communities) and landscape studies (landscape categories as pseudo-communities) that differ in community structure and anthropogenic stress history. Modeling time with a principal coordinate of neighborhood matrices (PCNM) approach, the canonical ordination technique (redundancy analysis; RDA) consistently outperformed the other statistical tests (i.e., TLAs, Mantel test, and RDA based on linear time trends) using all real data. In addition, the RDA-PCNM revealed different patterns of temporal change, and the strength of each individual time pattern, in terms of adjusted variance explained, could be evaluated, It also identified species contributions to these patterns of temporal change. This additional information is not provided by distance-based methods. The simulation study revealed better Type I error properties of the canonical ordination techniques compared with the distance-based approaches when no deterministic component of change was imposed on the communities. The simulation also revealed that strong emphasis on uniform deterministic change and low variability at other temporal scales is needed to result in decreased statistical power of the RDA-PCNM approach relative to the other methods. Based on the statistical performance of and information content provided by RDA-PCNM models, this technique serves ecologists as a powerful tool for modeling temporal change of ecological (pseudo-) communities.

摘要

时滞分析(TLA)是一种基于距离的方法,通过测量随着时间滞后的增加,群落相似性的变化,来研究生态群落的时间动态。尽管近年来它的使用越来越多,但与其他更直接的方法(即典范排序)相比,它的性能尚未得到评估。本研究使用广泛的模拟和真实数据集来填补这一空白,这些数据集来自实验性临时池塘(真正的浮游动物群落)和景观研究(作为伪群落的景观类别),它们在群落结构和人为压力历史方面存在差异。通过邻接矩阵主坐标(PCNM)方法对时间进行建模,典范排序技术(冗余分析;RDA)在使用所有真实数据时,始终优于其他统计检验(即 TLA、Mantel 检验和基于线性时间趋势的 RDA)。此外,RDA-PCNM 揭示了时间变化的不同模式,以及每个单独时间模式的强度,以调整后的方差解释,还可以评估物种对这些时间变化模式的贡献。这种附加信息是基于距离的方法无法提供的。模拟研究表明,在没有对群落施加确定性变化成分的情况下,典范排序技术比基于距离的方法具有更好的第一类错误特性。模拟还表明,需要强烈强调均匀的确定性变化和其他时间尺度上的低可变性,才能导致 RDA-PCNM 方法相对于其他方法的统计能力下降。基于 RDA-PCNM 模型的统计性能和提供的信息内容,该技术为生态学家提供了一种强大的工具,用于模拟生态(伪)群落的时间变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验