Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
Neuropharmacology. 2010 Mar;58(3):624-31. doi: 10.1016/j.neuropharm.2009.11.011. Epub 2009 Dec 5.
Striatal medium-sized spiny neurons (MSNs) contain the highest levels of soluble guanylyl cyclase (sGC) in the brain. Striatal sGC signaling is activated by nitric oxide (NO) and other neuromodulators. MSNs also express cGMP-dependent protein kinase and other components of the cGMP signaling system which are critically involved in integrating corticostriatal transmission and regulating synaptic plasticity in striatal networks. However, the influence of tonic and phasic activation of this signaling pathway on striatal MSN activity is poorly understood. The present study examined the impact of systemic administration of the selective sGC inhibitor [1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ) on spike activity evoked using low and high frequency electrical stimulation of the frontal cortex. MSN activity was monitored using single-unit extracellular recordings in urethane-anesthetized rats. ODQ administration significantly decreased spike activity evoked by low frequency cortical stimulation in a stimulus intensity- and time-dependent manner. Additionally, ODQ administered along with the neuronal NO synthase inhibitor 7-nitroindazole (7-NI) potently decreased the incidence of excitatory responses observed during high-frequency train stimulation of the contralateral frontal cortex. The short-term depression of cortically-evoked spike activity induced by train stimulation was enhanced following pretreatment with ODQ in MSNs exhibiting an excitatory response during cortical train stimulation. Unexpectedly, this effect of ODQ was reversed in animals receiving co-administration of ODQ and 7-NI. 7-NI/ODQ co-administration also reversed measures of short-term depression observed in MSNs exhibiting an inhibitory response during cortical train stimulation. These observations extend previous studies showing that tonic and phasic NO-sGC signaling modulates the responsiveness of MSNs to corticostriatal input. Moreover, phasic activation of NO signaling is likely to regulate short-term changes in corticostriatal synaptic plasticity via complex mechanisms involving both sGC-cGMP-dependent and independent pathways.
纹状体中型棘突神经元 (MSNs) 含有大脑中可溶性鸟苷酸环化酶 (sGC) 水平最高。纹状体 sGC 信号通过一氧化氮 (NO) 和其他神经调质激活。MSNs 还表达 cGMP 依赖性蛋白激酶和 cGMP 信号系统的其他成分,这些成分对于整合皮质纹状体传递和调节纹状体网络中的突触可塑性至关重要。然而,这种信号通路的紧张和阶段性激活对纹状体 MSN 活性的影响知之甚少。本研究检查了全身给予选择性 sGC 抑制剂 [1H-[1,2,4]恶二唑-[4,3-a]喹喔啉-1-酮] (ODQ) 对前额叶皮质低和高频电刺激诱发的尖峰活动的影响。在乌拉坦麻醉的大鼠中使用单细胞细胞外记录监测 MSN 活性。ODQ 给药以刺激强度和时间依赖的方式显著降低低频皮质刺激诱发的尖峰活动。此外,在对侧前额皮质高频串刺激期间,ODQ 与神经元一氧化氮合酶抑制剂 7-硝基吲唑 (7-NI) 联合给药强烈降低观察到的兴奋性反应的发生率。在皮质串刺激期间表现出兴奋性反应的 MSN 中,预处理 ODQ 增强了由串刺激诱导的皮质诱发尖峰活动的短期抑制。出乎意料的是,这种 ODQ 的作用在接受 ODQ 和 7-NI 共同给药的动物中被逆转。7-NI/ODQ 共同给药还逆转了在皮质串刺激期间表现出抑制性反应的 MSN 中观察到的短期抑制的措施。这些观察结果扩展了先前的研究,表明紧张和阶段性的 NO-sGC 信号调节 MSN 对皮质纹状体输入的反应性。此外,NO 信号的阶段性激活可能通过涉及 sGC-cGMP 依赖性和非依赖性途径的复杂机制来调节皮质纹状体突触可塑性的短期变化。