Suppr超能文献

Multiple estrogen binding sites in the uterus: stereochemistry of receptor and non-receptor binding of diethylstilbestrol and its metabolites.

作者信息

Chae K, Johnston S H, Korach K S

机构信息

Receptor Biology Section, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.

出版信息

J Steroid Biochem Mol Biol. 1991 Jan;38(1):35-42. doi: 10.1016/0960-0760(91)90398-o.

Abstract

Indenestrol A (IA), an oxidative metabolite of the synthetic estrogen diethylstilbestrol (DES), has high binding affinity for estrogen receptor in mouse uterine cytosol but possesses weak biological activity. Racemic mixture of optically active [3H]indenestrol A (IA-Rac) was separated and purified into individual enantiomers on a semi-preparative scale by HPLC with a Chiralpak OP(+) column. The structure-activity relationship was investigated among the [3H]IA enantiomers (IA-R and IA-S) and [3H]DES through direct saturation binding assays using mouse uterine cytosol. Specific binding curves and Scatchard plots were obtained for each [3H]ligand; DES, IA-Rac, IA-R and IA-S. IA-S enantiomer (Kd = 0.67) binds to the estrogen receptor with the same affinity as DES (Kd = 0.71) and four times higher affinity than IA-R (Kd = 2.56). The number of binding sites for IA-S is approximately the same as estradiol, DES and IA-Rac while IA-R binds far fewer sites than the other ligands. Saturation binding assays indicated that [3H]DES and [3H]IA enantiomers exhibited a higher level of non-specific binding to the cytosol receptor compared to estradiol which has a low level of non-specific binding. These binding studies led to the detection of an additional binding component for the stilbestrol compounds in estrogen target tissue cytosol preparations. Sucrose density gradient separation assays under low salt conditions showed that both [3H]DES and [3H]IA compounds bound to the 8S form of the receptor, the same as E2. But, in addition both DES and IA bound to another binding component in 4S region. The binding to the 4S component were partially displaced by the addition of excess unlabeled E2 and DES. Further characterization of the 4S component is described.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验