Suppr超能文献

多孔石墨烯作为气体分离的终极膜。

Porous graphene as the ultimate membrane for gas separation.

机构信息

Chemical Sciences Division and Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

出版信息

Nano Lett. 2009 Dec;9(12):4019-24. doi: 10.1021/nl9021946.

Abstract

We investigate the permeability and selectivity of graphene sheets with designed subnanometer pores using first principles density functional theory calculations. We find high selectivity on the order of 10(8) for H(2)/CH(4) with a high H(2) permeance for a nitrogen-functionalized pore. We find extremely high selectivity on the order of 10(23) for H(2)/CH(4) for an all-hydrogen passivated pore whose small width (at 2.5 A) presents a formidable barrier (1.6 eV) for CH(4) but easily surmountable for H(2) (0.22 eV). These results suggest that these pores are far superior to traditional polymer and silica membranes, where bulk solubility and diffusivity dominate the transport of gas molecules through the material. Recent experimental investigations, using either electron beams or bottom-up synthesis to create pores in graphene, suggest that it may be possible to employ such techniques to engineer variable-sized, graphene nanopores to tune selectivity and molecular diffusivity. Hence, we propose using porous graphene sheets as one-atom-thin, highly efficient, and highly selective membranes for gas separation. Such a pore could have widespread impact on numerous energy and technological applications; including carbon sequestration, fuel cells, and gas sensors.

摘要

我们使用第一性原理密度泛函理论计算研究了具有设计的亚纳米孔的石墨烯片的渗透性和选择性。我们发现,对于氮功能化的孔,H 2 /CH 4 的选择性高达 10 8 ,H 2 的渗透率很高。我们发现,对于全氢化的孔,H 2 /CH 4 的选择性极高,达到 10 23 ,其小宽度(为 2.5 A)对 CH 4 形成难以逾越的障碍(1.6 eV),但 H 2 (0.22 eV)很容易通过。这些结果表明,这些孔远远优于传统的聚合物和二氧化硅膜,在这些膜中,体相溶解度和扩散系数主导着气体分子在材料中的传输。最近的实验研究,无论是使用电子束还是自下而上的合成方法在石墨烯中创建孔,都表明可能可以采用这些技术来设计具有可变尺寸的石墨烯纳米孔,以调节选择性和分子扩散率。因此,我们提出使用多孔石墨烯片作为一种单原子厚的、高效的、高选择性的气体分离膜。这样的孔可能会对许多能源和技术应用产生广泛的影响;包括碳封存、燃料电池和气体传感器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验