Cheng Peifu, Ferrell Nicholas, Hus Saban M, Moehring Nicole K, Coupin Matthew J, Warner Jamie, Li An-Ping, Fissell William H, Kidambi Piran R
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States.
Division of Nephrology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, United States.
Nano Lett. 2025 Jan 8;25(1):193-203. doi: 10.1021/acs.nanolett.4c04706. Epub 2024 Dec 23.
Atomically thin 2D materials present the potential for advancing membrane separations via a combination of high selectivity (from molecular sieving) and high permeance (due to atomic thinness). However, the creation of a high density of precise nanopores (narrow-size-distribution) over large areas in 2D materials remains challenging, and nonselective leakage from nanopore heterogeneity adversely impacts performance. Here, we demonstrate protein-enabled size-selective defect sealing (PDS) for atomically thin graphene membranes over centimeter scale areas by leveraging the size and reactivity of permeating proteins to preferentially seal larger nanopores (≥4 nm) while preserving a significant amount of smaller nanopores (via steric hindrance). Our defect-sealed nanoporous atomically thin membranes (NATMs) show stability up to ∼35 days during size-selective diffusive separations with a model dialysis biomolecule fluorescein isothiocyanate (FITC)-Ficoll 70 in phosphate buffer saline (PBS) solution as well as outperform state-of-the-art commercially available dialysis membranes (molecular-weight-cutoff ∼3.5-5 kDa and ∼8-10 kDa) with significantly higher permeance for smaller solutes KCl (∼0.66 nm) ∼5.1-6 × 10 ms and vitamin B12 (B12, ∼1.5 nm) ∼2.8-4 × 10 ms compared to small protein lysozyme (Lz, ∼4 nm) ∼4-6.4 × 10 m s, thereby allowing unprecedented selectivity for B12/Lz ∼70 and KCl/Lz ∼1280. Our work introduces proteins as nanoscale tools for size-selective defect sealing in atomically thin membranes to overcome persistent issues and advance separations for dialysis, protein desalting, small molecule separations/purification, and other bioprocesses.
原子级薄的二维材料通过高选择性(源于分子筛分)和高渗透率(由于原子级薄)相结合,展现出推进膜分离技术的潜力。然而,在二维材料大面积上创建高密度的精确纳米孔(窄尺寸分布)仍然具有挑战性,并且纳米孔异质性导致的非选择性泄漏会对性能产生不利影响。在此,我们通过利用渗透蛋白的大小和反应活性,在厘米级区域的原子级薄石墨烯膜上展示了蛋白质介导的尺寸选择性缺陷密封(PDS),优先密封较大的纳米孔(≥4纳米),同时通过空间位阻保留大量较小的纳米孔。我们的缺陷密封纳米多孔原子级薄膜(NATM)在使用模型透析生物分子异硫氰酸荧光素(FITC)-聚蔗糖70在磷酸盐缓冲盐水(PBS)溶液中进行尺寸选择性扩散分离时,显示出高达约35天的稳定性,并且在较小溶质氯化钾(KCl,约0.66纳米)约5.1 - 6×10⁻⁹米/秒和维生素B₁₂(B₁₂,约1.5纳米)约2.8 - 4×10⁻⁹米/秒的渗透率方面优于市售的最先进透析膜(截留分子量约3.5 - 5千道尔顿和约8 - 10千道尔顿),相比之下,小蛋白溶菌酶(Lz,约4纳米)约4 - 6.4×10⁻¹⁰米/秒,从而实现了B₁₂/Lz约70和KCl/Lz约1280前所未有的选择性。我们的工作引入蛋白质作为纳米级工具,用于原子级薄膜中的尺寸选择性缺陷密封,以克服长期存在的问题,并推进透析、蛋白质脱盐、小分子分离/纯化及其他生物过程的分离技术。