Department of Biochemistry & Molecular Biology, The University of Calgary, Calgary, Alberta, Canada.
PLoS Pathog. 2009 Dec;5(12):e1000680. doi: 10.1371/journal.ppat.1000680. Epub 2009 Dec 4.
Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the accompanying article, who also found a requirement for the RuvAB branch migrase. Our results also indicate that the mechanism of switching at vlsE in B. burgdorferi is distinct from switching at pilE in N. gonorrhoeae, which is the only other organism analyzed genetically in detail. Finally, our findings suggest a unique mechanism for switching at vlsE and a role for currently unidentified B. burgdorferi proteins in this process.
持续性感染病原体需要有效的策略来保护这些生物体免受宿主免疫反应的影响。许多病原体逃避免疫识别和清除的常见策略是通过基因信息的重组重排不断改变表面表位。伯氏疏螺旋体是莱姆病的病原体,它编码一种表面结合的脂蛋白 VlsE。这种蛋白质由线性质粒 lp28-1 右端携带的 vlsE 基因座编码。在表达基因座的旁边是 15 个沉默盒,它们携带通过片段基因转换事件转移到 vlsE 基因座的信息。VlsE 重组转换的蛋白质参与者和分子机制尚未得到表征。在这项研究中,我们分析了独立破坏 17 个编码参与 DNA 重组、修复或复制因子的基因对 vlsE 基因座在鼠感染期间重组转换的影响。在淋病奈瑟菌中,10 个这样的基因已被牵连到 pilE 基因座的重组转换中。这些基因中的 8 个,包括 recA,要么不存在于伯氏疏螺旋体中,要么在 vlsE 中不显示转换的明显要求。在这两种生物体中都需要的唯一基因是 ruvA 和 ruvB,它们编码 Holliday 连接分支迁移酶的亚基。这些基因的破坏导致 vlsE 重组急剧减少,表型类似于观察到的 lp28-1 或 vls-缺失螺旋体:第 1 周有有生产力的感染,第 21 天清除。在 SCID 小鼠中,与 ruvA 和 ruvB 突变体观察到的持续性缺陷得到了完全挽救,正如以前观察到的 vlsE 缺陷伯氏疏螺旋体那样。我们报告了 RuvAB 分支迁移酶在 vlsE 重组转换中的要求,这是该过程中鉴定的第一个必需因素。这些发现得到了 Lin 等人在随附文章中独立工作的支持,他们也发现了 RuvAB 分支迁移酶的要求。我们的结果还表明,伯氏疏螺旋体 vlsE 转换的机制与淋病奈瑟菌 pilE 转换不同,淋病奈瑟菌是唯一经过详细遗传分析的其他生物体。最后,我们的发现表明 vlsE 转换具有独特的机制,并且目前未知的伯氏疏螺旋体蛋白在该过程中起作用。